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1 Introduction

In these lecture notes we introduce some actual methods and tools used in the
study of nonlinear boundary value problems and illustrate them in our recent
results, concerning existence and multiplicity of solutions to some Dirichlet and
Neumann problems for nonlinear elliptic equations driven by the p�Laplacian
di¤erential operator with nonsmooth and multivalued terms.
The paper is organized as follows. In Section 2 we recall some notions and

facts concerning the calculus of smooth functions and introduce some notions
of nonsmooth analysis, that we will use in the next sections.
The critical point theory for smooth and for nonsmooth functionals devel-

oped in Section 3, is the main tool in the variational method for solving boundary
value problems.
The need of speci�c applications such as nonsmooth mechanics, nonsmooth

gradient systems, mathematical economics, etc.) and the impreesive progress
in nonsmooth analysis and multivalued analysis led to extensions of the critical
point theory to nondi¤erentiable functions, in particular locally Lipschitz and
even continuous functions.
The resulting nonsmooth critical point theory succedded in extending a big

part of the smooth (C1) theory. We present the main facts of this theory that
we used to solve certain boundary value problems for nonlinear ordinary and
elliptic partial di¤erential equations and we refer to [27] for further results and
details.
The variational method studied in Section 4 consists of trying to �nd so-

lutions for a given boundary value problem by looking for stationary points of
a real functional de�ned on a space of functions in which the solution of the
boundary value problem is to lie. we discuss the variational method and illus-
trate it in recent results, where both smooth and the nonsmooth critical point
theory is used. We consider Dirichlet and Neumann problems for nonlinear
elliptic equations driven by the ordinary and partial p�Laplacian di¤erential
operator. We used this method to obtain existence of multiple solutions to non-
linear Dirichlet problem with nonsmooth potential (hemivariational inequality)
[45] and also to prove existence of solutions with precise sign information for the
p-Laplacian Neumann problem [3], existence of multiple constant sign solutions
and of nodal solutions when the nonlinear perturbation have superlinear growth
near in�nity [4].
Section 5 is dedicated to the spectrum of the negative p-Laplacian both for

Dirichlet boundary conditions and for Neumann boundary conditions. We recall
�rst important known results starting with the ordinary (N = 1) case, and then
we recall some basic results for N � 1: In the last part of this section we empha-
size some recent results obtained in [4] concerning the spectrum of the negative
p� Laplacian with Neumann boundary conditions (denoted by (�4p;W

1;p (Z)):
an alternative variational characterizations of the �rst nonzero eigenvalue of the
negative p� Laplacian with Neumann boundary conditions, distinct from the
one determined by the Lusternik-Schnirelmann theory; the continuous depen-
dence of the eigenvalues on p 2 (1;+1) ; the isolation of the principal eigenvalue
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�0 = 0 is uniform for all p in a bounded interval, and an index formula (jumping
theorem) for the degree of the nonlinear operator corresponding to the eigen-
value problem, as we approach the eigenvalue from above and below. Those
results have been applied in [?] to prove a multiplicity result for nonlinear Neu-
mann problems with a multivalued crossing nonlinearity.
In Section 6 we present the method of upper and lower solutions, which pro-

vides an e¤ective tool to produce existence theorems for �rst and second order
initial and boundary value problems and to generate monotone iterative tech-
niques which provide constructive methods (amenable to numerical treatment),
to obtain solutions. We apply this method combined with some variational ar-
guments to prove multiplicity results to some perturbed eigenvalue problems
with the p� Laplacian and a nonlinear perturbation. In addition, we also es-
tablish the existence of extremal solutions in the order interval formed by an
ordered pair of upper and lower solutions.
Section 7 is dedicated to degree theory, which is a basic tool of nonlinear

analysis and produces powerful existence and multiplicity results for nonlinear
boundary value problems. A special atention is dedicated to a generalization
of Brouwer degree theory to multivalued perturbations of monotone type maps,
developed in our joint paper [2].
In Section 8 we illustrate the degree theoretical approach in the study of

nonlinear boundary value problems. Recent generalizations of degree theory to
nonlinear operators of monotone type, paved the way to use degree theoretical
methods to boundary value problems of nonlinear partial di¤erential equations
and to problems with unilateral constraints (such as variational and hemivaria-
tional inequalities).
In Section 9 we recall some basic notions and results from Morse theory,

which we will need in Section 10 produce nontrivial smooth solutions and obtain
multiplicity results.
Several of the quoted results use a combinations of the methods from above:

variational com some truncations, degree theoretic approach and/or upper-lower
solutions method.
In Section 11 we refer to some complementary topics of set-valued analysis,

di¤erential inclusions and their relations with control theory and variational
calculus,

2 Smooth and nonsmooth calculus

In this section we present some basic aspects of smooth and nonsmooth calculus
in Banach spaces, providing some basic tools to approach the subjects in the
sections that follows.
Let X be a Banach space, X� its topological dual and by h�; �i we denote the

duality brackets for the pair (X;X�) (the pairing between X� and X): Let '
be a real function de�ned in a nonempty open subset U � X: If we want to �nd
necessary condition for f have a minimum, we need a suitable generalization of
the concept of derivative. The simplest one is the Gateaux derivative.
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De�nition 1 We say that ' : U � X ! R has a Gateaux derivative x� 2 X�

at x 2 U if, for every h 2 X one has

lim sup
t!0

' (x+ th)� ' (x)� hx�; thi
t

= 0:

We denote x� by '0 (x) :

A stronger form of diferentiability is Fréchet diferentiability

De�nition 2 We say that ' : U � X ! R has a Fréchet derivative x� 2 X� at
x 2 U if

lim sup
h!0

' (x+ h)� ' (x)� hx�; hi
t

= 0:

Of course the Fréchet derivative at x is the Gateux derivative at x and we
keep the notation '0 (x) :
We say that ' 2 C1(U;R) or that ' is continuously Fréchet di¤erentiable)

if the Fréchet derivative '0 (x) exists at each x 2 U and the map x �!'0 (x) is
continuous from X into X�: We denote by C1(U) the set of all real continuous
di¤erentiable functions de�ned on U:
With those de�nitions, it is straightforward to generalize to the setting of

Banach spaces Fermat�s necessary condition for the existence of a local minimum
or maximum of ' at x 2 U;

'0 (x) = 0; (1)

when ' is Gateux di¤erentiable at x 2 U:
Any x 2 U satisfying (1) is called a critical point of ' and ' (x) is called a

critical value.
Consequently, if a mapping � : X ! X� can be written as � = '0 for some

Gateaux di¤erentiable function ' : X ! R, every critical point of ' provide a
solution of the equation

� (u) = 0:

It is in particular the case for any local minimum and local maximum of ':
Let now ' : X �! R := R[f+1g. We say ' is a proper function if its

e¤ective domain
dom (') := fx 2 X : '(x) < +1g

is nonempty. We say that ' is a convex function if for all x1; x2 2 dom (') and
all � 2 [0; 1], we have

�(�x1 + (1� �)x2) � �'(x1) + (1� �)'(x2):

If this inequality is strict when x1 6= x2 and � 2 (0; 1), then we say that ' is
strictly convex.
It is easy to check that ' is convex if and only if its epigraph

epi (') = f(x; �) 2 X � R : '(x) � �g
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is convex. We say that ' : X �! R is lower semicontinuous if for every � 2 R
the sublevel set

L� (') = fx 2 X : '(x) � �g

is closed. It is well known that a convex and lower semicontinuous function
' : X�! R is continuous on the interior of dom (').
We denote by �0(X); the set of all proper, convex and lower semicontinuous

functions from X into R.
The subdi¤erential of a convex function characterizes the local behavior of

the convex function in a way analogous to that in which derivatives determine
the local behavior of smooth functions.
Let ' : X�! R be a proper function and x0 2 dom ('). The subdi¤erential

(in the sense of convex analysis) of ' at x0 is the set @c'(x0) � X� (possibly
empty) de�ned by

@c'(x0) = fx� 2 X� : hx�; hi � '(x0 + h)� '(x0) for h 2 Xg: (2)

The generalization of Fermat�s necessary condition for the case of convex
functions is the following: x0 2 X is a minimum of the convex function ' : X�!
R if and only if

0 2 @'(x0):

If X is a Banach space and ':X�! R is a proper convex function which is
Gâteaux di¤erentiable at x0 then

@'(x0) = f'0(x0)g:

The nonsmooth critical point theory that we will study in Section 3 and
which we employ in the variational arguments, is based mainly on the subd-
i¤erential theory for locally Lipschitz functions. Further details on these sub-
jects can be found in the books of Clarke [18] (the subdi¤erential theory) and
Gasinski-Papageorgiou [27] (the nonsmooth critical point theory).
Let, as before, X be a Banach space and X� be its dual and let ' : X ! R

be a locally Lipschitz function. The generalized directional derivative '0 (x;h)
of ' at x 2 X in the direction h 2 X; is de�ned by

'0 (x;h) = lim sup
x0!x
�#0

' (x0 + �h)� ' (x0)
�

: (3)

It is straightforward to check that h! '0 (x;h) is continuous, sublinear and so it
is the support function of a nonempty, convex and w�-compact set @' (x) � X�

de�ned by

@' (x) =
�
x� 2 X� : hx�; hi � '0 (x;h) for all h 2 X

	
: (4)

The multifunction x ! @' (x) is called the (Clarke) generalized subdi¤erential
of ':
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If ' 2 C1 (X), then ' is locally Lipschitz and

@' (x) = f'0 (x)g :

Also, if ' : X ! R is a continuous convex function, then the generalized subd-
i¤erential of ' coincides with the subdi¤erential in the sense of convex analysis
@c' (x) de�ned by (2) : If ';  : X ! R are locally Lipschitz functions, then

@ ('+  ) (x) � @' (x) + @ (x) for all x 2 X:

The extension to the present nonsmooth setting of the Fermat�s necessary
condition for the existence of local extrema is the following:

Proposition 3 If ' : X ! R is a locally Lipschitz functions which attains a
local extrema (local minimum or local maximum) at x 2 X then

0 2 @' (x) : (5)

3 Smooth and nonsmooth critical point theory

In this section we develop the critical point theory for smooth and nonsmooth
functionals, the main tools in the variational method. This method consists of
trying to �nd solutions of a given equation, by looking for stationary points of a
real functional ' (:) de�ned on the function space X in which the solution of the
equation is to lie. The given equation is the Euler�Lagrange equation satis�ed
by a stationary point.
To guaranty minimizers (or maximizers) we need two types of properties of

the functional ' (:) we need two types of properties of the functional ' : one
is quantitative and requires that the sublevel sets L� (') = fx 2 X : '(x) �
�g are relatively compact in some useful topology on X (coercivity property)
and the other qualitative, which requires the lowes semicontinuity (or upper
semicontinuity) of ' (:) for the same topology on X:
A coercive functional is bounded below. But many functionals which we

may encounter often, may be not bounded at all, nether above or from below.
Thus we need results where other types of critical points may be identi�ed.

De�nition 4 Let X be a Banach space and let ' 2 C1 (X) :We sau that x 2 X
is a critical point of '; if '0 (x) = 0: We say that c 2 R is a critical value of '
if there is a critical point x 2 X such that c = ' (x) : We say that c 2 R is a
regular value of ' if it is not a critical value of ':

Let X be a Banach space and ' 2 C1 (X) : For every � 2 R := R[f+1g
and every c 2 R; we introduce the following notations:

'� = fx 2 X : ' (x) � cg ,
K = fx 2 X : '0 (x) = 0g
Kc = fx 2 K : ' (x) = cg ;
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for the sublevel set of ' at �; the critical set of ' and the critical set of ' at
level c 2 R; respectively.
In order to get informations about the critical set K we employ the so-called

deformation method.

De�nition 5 A continuous function h : [0; 1]�X ! X is called a deformation
of X if h (0; x) = x for all x 2 X: A family S of subsets of X is said to
be deformation invariant if h (1; A) 2 S for every A 2 S and every h (:; :)
deformation of X:

We are interested on deformations h (:; :) which e¤ectively decrease the values
of ' on XnK and try to determine critical values of ' characterized by minimax
expresion of the form

c = inf
A2S

sup
x2A

' (x)

for various deformation invariant classes S. The construction of suitable defor-
mations is the most technical part of the deformation method, and a guiding
condition to produce apropriate deformations is the following
Condition (D): For h : [0; 1]�X ! X a deformation of X; we have:
(i) for all �1 < a < b < +1 with '�1 ([a; b]) \K = ?; there exists t0 > 0

such that
h
�
t0; '

b
�
� 'a;

(ii) if c 2 R and U is a neighborhood of Kc, there exists t0 > 0 and a; b 2 R
such that a < c < b for which we have

h
�
t0; '

b
�
� U [ 'a:

Remark 6 Condition (i) says that h (:; :) e¤ectively decreases the values of '
in XnK: So nothing can happen topologically between the levels a and b; if the
interval [a; b] does not contains any critical value. On the other hand (ii) says
that if we start a little above a critical level c; then we either bypass the critical
neighborhood U and as before reach a harmless level a < c or will end up in U;
where topologically interesting things may happen.

The deformation theorem that we will prove in the sequel, shows how to
construct deformations satisfying condition (D) above. Let introduce now the
following compactness-type conditions

De�nition 7 Let X be a Banach space with norm k:k ; and let ' 2 C1(X).
We say that ' satis�es the Palais�Smale condition at level c 2 R (the PSc�

condition for short), if every sequence (xn)n�1 � X such that

'(xn) �! c and '0(xn) �! 0;

has a strongly convergent subsequence. If this is true at every level c 2 R, then
we simply say that ' satis�es the PS�condition.
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We say that ' satis�es the Cerami condition at level c 2 R (the Cc�condition
for short), if every sequence (xn)n�1 � X such that

'(xn) �! c and (1 + kxnk)'0(xn) �! 0;

has a strongly convergent subsequence. If this is true at every level c 2 R, then
we simply say that ' satis�es the C�condition.

Clearly Cc�condition is weaker that PSc�condition. If X is a Banach space
and ' 2 C1(X) is bounded below and satis�es C� condition then ' is weakly
coercive, i.e.,

'(x) �! +1 as kxk �! +1:
Moreover, if X is a Banach space and ' 2 C1(X) is bounded below then PS�
condition and C�condition are equivalent.
The next result is known as Deformation Theorem which will lead to mini-

max characterizations of the critical values of ' (for the proof see [27], p. 132).

Theorem 8 If X is a Banach space and ' 2 C1(X) satis�es the Cc�conditionfor
some c 2 R then for every "0 > 0 and every neighborhood U of Kc (if Kc=?,
then U =?) and every � > 0;we can �nd " 2 (0; "0) and a continuous map h :
[0; 1]�X�! X (a continuous homotopy) such that for all (t; x) 2 [0; 1]�X,we
have:
(i) kh(t; x)� xk � �(1 + kxk)t;
(ii) '(h(t; x)) � ' (x);
(iii) h(t; x) 6= x implies '(h(t; x)) < '(x);
(iv) j' (x)� cj � "0 implies h(t; x) = x;
(v) h(1; 'c+") � 'c�" [ U .

Now we will use this deformation theorem to produce minimax characteri-
zations of the critical values of ' 2 C1(X). For this we will need the following
basic topological notion:

De�nition 9 Let Y be a Hausdor¤ topological space, E0 � E and D are non-
empty subsets of Y with D closed and � 2 C(E0; X). We say that the sets
fE0; Eg and D link in Y via � if and only if the following conditions are both
satis�ed:
(a) E0 \D = ?
(b) for any  2 C(E;X) such that jE0 = �jE0 , we have (E) \D 6= ;.
The sets fE0; E;Dg are said to be linking sets via � 2 C(E0; X): If � =

IdjE0 , then we simply say that fE0; E;Dg are linking sets.

Theorem 10 If X is a Banach space, ' 2 C1(X), the sets fE0; E;Dg are
linking via �;

� = sup
E0

' < inf
D
' = �;

� = f 2 C(E;X) : jE0 = �g;
c = inf

2�
sup
x2E

'( (x))
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and ' satis�es the Cc�condition, then c � � and c is a critical value of '.

Proof. Since by hypothesis the sets fE0; E;Dg are linking via � 2 C(E0; X),
for every  2 � we have (E) \D 6= ; and so � � c.
To show that c is a critical value of ', we argue by contradiction. So suppose

by that Kc = ;. Set "0 = ��� and U = ?. Then by virtue of the Deformation
Theorem, we can �nd 0 < " < "0 and a continuous homotopy h : [0; 1]�X�!X
which satis�es statements (i)� (v) of that theorem. We choose  2 � such that

'( (x)) < c+ " for all x 2 E: (6)

Set 0 (x) = h (1; 0 (x)) for all x 2 E. From the choice of "0 > 0 and statement
(iv) in Deformation Theorem we see that 0jE0 = � and so 0 2 �. For all
x 2 E, we have

'(0 (x)) = ' (h (1;  (x))) : (7)

Combining (6) and (7) with statement (v) of deformation theorem we infer that

'(0 (x)) � c� " for all x 2 E;

a contradiction to the de�nition of c.

Now with suitable choices of the linking sets, we can have the Mountain pass
theorem and the Saddle point theorem.
We start with the Mountain pass theorem:

Theorem 11 If X is a Banach space, ' 2 C1(X), x0; x1 2 X and r > 0 are
such that kx1 � x0k � r;

maxf'(x0); '(x1)g < inff' (x) : kx� x0k = rg;

� = f 2 C([0; 1]; X) : (0) = x0; (1) = x1g;
c = inf

2�
max
t2[0;1]

' (((t))

and ' satis�es the Cc�condition, then

c � inff' : kx� x0k = rg

and c is a critical value of '.

Proof. We consider the linking sets E0 = fx0; x1g; E = f(1 � t)x0 + tx1 : t 2
[0; 1]g; D=@Br(x0) and we apply Theorem 11.
Next we state the Saddle point theorem:

Theorem 12 If X is a Banach space, X = Y � V with dimY < +1, ' 2
C1(X), there exists R > 0 such that

maxf'(x) : x 2 @BR(0) \ Y g < inff'(x) : x 2 V g = �

� = f 2 C
�
BR(0) \ Y;X

�
: j@BR(0)\Y = Id@BR(0)\Y

c = inf
2�

sup
x2E

' ((x))

and ' satis�es the Cc�condition, then c � � and c is a critical value of '.
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Proof. We consider the linking sets E0 = @BR(0)\ Y; E = BR(0)\ Y; D = V
and we apply Theorem 11.
Next we look for multiple critical points of a smooth functional '. For this

purpose we introduce the following notion.

De�nition 13 Let X be a Banach space, X=Y � V and '2C1(X). We say
that ' has a local linking at 0, if there exists r > 0 such that�

' (x) � 0 if x 2 Y; kxk � r
' (x) � 0 if x 2 V; kxk � r:

Remark that x = 0 is a critical point of '. The next result due to Brezis-
Nirenberg [12] furnishes two more, distinct nontrivial critical points of ':

Theorem 14 If X is a Banach space, X=Y � V with dim Y <1; '2C1(X)
is bounded below, satis�es PS-condition and is such that

m = inf
x2X

' (x) < ' (0) = 0

and there exists r > 0 such that�
' (x) � 0 if x 2 Y; kxk � r
' (x) � 0 if x 2 V; kxk � r:

then ' has at least two nontrivial critical points.

For the proof we refer to [12] and to [28], p. 661)
The nonsmooth critical point theory that we consider in the remaining of

this section, will be employed in the variational method and it is based mainly
on the subdi¤erential theory for locally Lipschitz functions (see [18] and [27]).
Let X be a Banach space, X� be its topological dual and let h�; �i be the

duality brackets for the pair (X;X�). Let ' : X ! R be a locally Lipschitz
functional.
Let '0 (x;h) be the generalized directional derivative of ' at x 2 X in the

direction h 2 X de�ned by (3) and for each x 2 X let @' (x) � X� be the
Clarke subdi¤erential of ' de�ned by (4) : Recall that @' (x) is a nonempty,
convex, w�-compact subset of X� and, if ' 2 C1 (X) then ' is locally Lipschitz
and

@' (x) = f'0 (x)g :

De�nition 15 We say that x 2 X is a critical point of a locally Lipschitz
function ' : X ! R if

0 2 @' (x) :

If x 2 X is a critical point then c = ' (x) is called a critical value. of ':
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De�nition 16 Given a locally Lipschitz function ' : X ! R, we say that '
satis�es the Palais-Smale condition at level c 2 R (PSc-condition, for short), if
every sequence fxngn�1 � X such that

' (xn)! c and m (xn) := inf [kx�k : x� 2 @' (xn)]! 0; as n!1;

has a strongly convergent subsequence. We say that ' satis�es the PS-condition,
if it satis�es the PSc-condition for every c 2 R.

Sometimes, it is more appropriate to use a slightly more general compactness
notion, the so-called Cerami condition.

De�nition 17 We say that a locally Lipschitz function ' : X ! R, satis�es
the Cerami condition at level c 2 R (Cc-condition, for short), if every sequence
fxngn�1 � X such that

' (xn)! c and (1 + kxnk)m (xn)! 0; as n!1;

has a strongly convergent subsequence. We say that ' satis�es the C-condition,
if it satis�es the Cc-condition for every c 2 R.

Remark that the Cerami condition is weaker than Palais-Smale condition,
and the two notions coincide if ' is bounded below.
The topological notion of linking sets is crucial in the minimax characteri-

zation of the critical values of a locally Lipschitz function.

De�nition 18 Let Y be a Hausdor¤ topological space, E0, E and D are non-
empty closed subsets of Y , with E0 � E. We say that the pair fE;E0g is linking
with D in Y , if
(i) E0 \D = ?;
(ii) for any  2 C (E; Y ), with jE0 = idjE0 , we have  (E) \D 6= ?.

Using this topological notion, we get the following general minimax prin-
ciple for the critical values of a locally Lipschitz function (see Kourogenis-
Papageorgiou [33]):

Theorem 19 If E0, E and D are nonempty, closed subsets of X, fE;E0g is
linking with D in X, ' : X ! R is locally Lipschitz,

sup
E0

' � inf
D
';

' satis�es the Cc-condition, where

c = inf
2�

sup
x2E

' ( (x)) and � = f 2 C (E;X) : jE0 = idjE0g

then
c � inf

D
'
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and c is a critical value of '. Moreover, if

c = inf
D
';

then there exists a critical point x of ', such that ' (x) = c and x 2 E.

With suitable choices of linking sets, we produce nonsmooth versions of well-
known minimax theorems. We mention the nonsmooth mountain pass theorem,
which we shall need in the sequel.

Theorem 20 If x0, x1 2 X with kx1 � x0k > r > 0,

max f' (x0) ; ' (x1)g � inf ' (x) : kxk = r

and ' satis�es the PSc-condition, where

c = inf
2�

sup
t2[0;1]

' ( (t)) ; � = f 2 C ([0; 1] ; X) :  (0) = x0,  (1) = x1g

then
c � inf

kxk=r
' (x)

and c is a critical value of ', with ' (x) = c. Moreover, if

c = inf
kxk=r

' (x) ;

then there exists a critical point x of ', with

' (x) = c and kxk = r:

More about the nonsmooth critical point theory can be found in the books
of Carl-Le-Motreanu [15], Gasinski-Papageorgiou [27] and Motreanu-Radulescu
[42]. Recently, Kandilakis-Kourogenis-Papageorgiou [32] (see also Gasinski-
Papageorgiou [27], p.178), extended to a nonsmooth setting the local linking
theorem of Brezis-Nirenberg [12].

Theorem 21 If X = Y � V , with dimY < +1, ' is locally Lipschitz on
bounded sets, bounded below, satis�es the PS-condition, ' (0) = 0; inf f' (x) : x 2 Xg <
0 and there exists r > 0, such that�

' (x) � 0 if x 2 Y; kxk � r
' (x) � 0 if x 2 V; kxk � r:

then ' has at least two nontrivial critical points.
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4 Variational method

In this section we use the variational method to solve some characteristic second
order boundary value probems under Dirichlet and under Neumann boundary
conditions.
This method consists of trying to �nd solutions for a given boundary value

problem by looking for stationary points of a real functional de�ned on a space
of functions in which the solution of the boundary value problem is to lie.
Let Z � Rn be a bounded domain with a C2 boundary @Z: We consider

the following nonlinear Dirichlet problem with nonsmooth potential (hemivari-
ational inequality) (see [45]),(

�div
�
kDx (z)kp�2Dx (z)

�
2 @j (z; x (z)) a.e. on Z;

x j@Z= 0; 1 < p <1:
(8)

and we want to apply variational method to obtain two of the three solutions
for this problem A third solution will be obtained ater by using a degree theory
argument.
The hypotheses on the nonsmooth potential function j (z; x) are the follow-

ing:

H (j) : j : Z � R! R is a function such that j (z; 0) = 0 a.e. on Z and

(i) for all x 2 R, z ! j (z; x) is measurable;

(ii) for almost all z 2 Z, x! j (z; x) is locally Lipschitz;

(iii) for every r > 0, there exists ar 2 L1 (Z)+ such that for almost all
z 2 Z, all jxj � r and all u 2 @j (z; x), we have

juj � ar (z) ;

(iv) there exists � 2 L1 (Z)+ such that � (z) � �1 a.e. on Z with strict
inequality on a set of positive measure and

lim sup
jxj!+1

u

jxjp�2 x
� � (z)

uniformly for almost all z 2 Z and all u 2 @j (z; x);
(v) there exist functions �1; �2 2 L1 (Z)+ with �1 � �1 (z) � �2 (z) a.e.

on Z, the �rst inequality is strict on a set of positive measure,

�1 (z) � lim inf
x!0+

u

xp�1
� lim sup

x!0+

u

xp�1
� �2 (z)

and
lim
x!0�

u

jxjp�2 x
= 0;

uniformly for almost all z 2 Z and all u 2 @j (z; x);

13



(vi) for a.a. z 2 Z, all x 2 R and all u 2 @j (z; x) we have

ux � 0. (sign condition)

Remark 22 Note that at 0+ and �1, we allow partial interaction with the
principal eigenvalue �1 > 0 (nonuniform nonresonance). When p = 2 (semilin-
ear problems), hypotheses H (j) incorporate in our framework of analysis, the
so-called asymptotically linear problems, which attracted considerable interest
since the appearance of the pioneering work of Amann-Zehnder [5]. We point
out, that the hypotheses are asymmetric with respect to 0+ and 0�. Moreover,
it is worth mentioning that as we move from 0+ to +1, we cross the principal
eigenvalue �1 > 0.
The following simple nonsmooth, locally Lipschitz function satis�es all hy-

potheses H (j) : For simplicity we drop the z dependence in its de�nition:

j (x) =

8>><>>:
c
p jxj

p
+ 1

r �
c
p if x < �1

1
r jxj

r if x 2 [�1; 0]
�
px

p if x 2 [0; 1]
�
px

p + 1
p lnx

p + ���
p if x > 1

,

with 1 < p < r <1 and c; � < �1 < �:

In this section, employing a variational approach based on nonsmooth analy-
sis, we establish the existence of two smooth constant sign solutions for problem
(8). To this end, we need to truncate the potential function and consider the
energy functional corresponding to the truncated potential. So let �� : R! R+
be the Lipschitz continuous truncation maps de�ned by

�+ (x) =

�
0 if x � 0
x if x > 0

and �� (x) =
�

x if x < 0
0 if x � 0 :

We set
j� (z; x) = j (z; �� (x)) :

Clearly for every x 2 R, z ! j� (z; x) are measurable and for almost all z 2 Z,
x ! j� (z; x) are locally Lipschitz. Note that since by hypothesis j (z; 0) = 0
a.e. on Z, for almost all z 2 Z and all x � 0 (resp. x � 0 ) we have j+ (z; x) = 0
(resp. j� (z; x) = 0). Moreover, from the nonsmooth chain rule (see Clarke [?],
p.42), we have

@j+ (z; x) �

8<: f0g if x < 0
fr@j (z; 0) : r 2 [0; 1]g if x = 0
@j (z; x) if x > 0

(9)

and

@j� (z; x) �

8<: @j (z; x) if x < 0
fr@j (z; 0) : r 2 [0; 1]g if x = 0
f0g if x > 0

: (10)
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We consider the functionals '� :W
1;p
0 (Z)! R+ de�ned by

'� (x) =
1

p
kDxkpp �

Z
Z

j� (z; x (z)) dz for all x 2W 1;p
0 (Z) :

Then '� are Lipschitz continuous on bounded sets, hence locally Lipschitz (see
Clarke [?], p.83). In what follows, for notational simplicity we set

W+ =W 1;p
0 (Z)+ =

n
x 2W 1;p

0 (Z) : x (z) � 0 a.e. on Z
o

C+ = C10
�
Z
�
+
=
n
x 2 C10

�
Z
�
+
: x (z) � 0 for all z 2 Z

o
and

C� = �C+:

As we already mentioned in Section 2, int C+ 6= ? and int C+ is given by (52).
Hereafter, by h�; �i we denote the duality brackets for the pair

�
W�1;p0 (Z) =W 1;p

0 (Z)
�
;W 1;p

0 (Z)
�
;

where 1
p +

1
p0 = 1. We consider the nonlinear operator A : W 1;p

0 (Z) !
W�1;p0 (Z) de�ned by

hA (x) ; yi =
Z
Z

kDxkp�2 (Dx;Dy)RN dz for all x, y 2W
1;p
0 (Z) : (11)

It is straightforward to check that A is bounded, continuous, monotone, hence
it is maximal monotone. Also let N� : Lp (Z) ! 2L

p0(Z) be the multifunctions
de�ned by

N� (x) =
n
u 2 Lp

0
(Z) : u (z) 2 @j� (z; x (z)) a.e. on Z

o
(12)

for all x 2W 1;p
0 (Z) : These are the multivalued Nemytskii operators correspond-

ing to the subdi¤erentials x! @j� (z; x) : We have

@'� (x) = A (x)�N� (x) for all x 2W 1;p
0 (Z) : (13)

The next proposition is crucial in obtaining the constant sign solutions of
problem (8). It underlines the signi�cance of the nonuniform nonresonance
condition at �1 (hypothesis H (j) (iv)) and implies that the functionals '�
are coercive. This fact makes possible the use of variational techniques.

Proposition 23 If � 2 L1 (Z)+ satis�es � (z) � �1 a.e. on Z with strict
inequality on a set of positive measure, then there exists �0 > 0 such that

 (x) = kDxkpp �
Z
Z

� (z) jx (z)jp dz � �0 kDxkpp for all x 2W
1;p
0 (Z) : (14)
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Proof. From the variational characterization of �1 (see the previous proposition
and (49)) we have that  � 0: Suppose that (14) is not true. Since  is p-
positively homogeneous, we can �nd fxngn�1 �W 1;p

0 (Z) such that

kxnk = 1 for all n � 1 and  (xn) # 0 as n!1:

We may assume that

xn
w! x in W 1;p

0 (Z) , xn ! x in Lp (Z) , xn (z)! x (z) a.e. on Z

and
jxn (z)j � k (z) a.e. on Z, for all n � 1 with k 2 Lp (Z)+ :

We have Dxn
w! Dx in Lp

�
Z;RN

�
and so

kDxkpp � lim inf
n!1

kDxnkpp : (15)

Also from the dominated convergence theorem, we haveZ
Z

� (z) jxn (z)jp dz !
Z
Z

� (z) jx (z)jp dz as n!1: (16)

From (15) and (16), we have

 (x) � lim
n!1

 (xn) = 0;

hence

kDxkpp �
Z
Z

� (z) jx (z)jp dz � �1 kxkpp : (17)

Because of (49) and since the in�mum in that expression is attained at u1, from
(17) it follows that x = 0 or x = �u1:
If x = 0, then kDxnkp ! 0 and so by Poincaré�s inequality xn ! 0 in

W 1;p
0 (Z), a contradiction to the fact that kxnk = 1 for all n � 1:
If x = �u1, then from the �rst inequality in (17) and since jx (z)j = u1 (z) >

0 for all z 2 Z, due to the hypothesis on �, we obtain

kDxkpp < �1 kxkpp ,

a contradiction to (49). This proves (14).
Using this proposition and a variational argument based on notions from

nonsmooth analysis, we can produce the �rst two solutions of constant sign for
problem (8).

Theorem 24 If hypotheses H (j) hold, then problem (8) has two solutions x0 2
int C+ and v0 2 �int C+:
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Proof. By virtue of hypothesis H (j) (iv), given " > 0, we can �nd M =
M (") > 0 such that for almost all z 2 Z, all x � M and all u 2 @j (z; x) =
@j+ (z; x), we have

u � (� (z) + ")xp�1: (18)

On the other hand, hypothesis H (j) (iii) and (9) imply that there exists
a" 2 L1 (Z)+ such that for almost all z 2 Z, all 0 � x < M and all u 2
@j+ (z; x), we have

u � a" (z) : (19)

Finally note that for almost all z 2 Z, all x < 0 and all u 2 @j+ (z; x), we have
u = 0 (see (9)) From this together with (18) and (19), we deduce that for almost
all z 2 Z, all x 2 R and all u 2 @j+ (z; x), one has

u � (� (z) + ") jxjp�1 + a" (z) (20)

By hypothesis H (j) (iii), for all z 2 ZnD with jDjN = 0 (by j�jN we denote the
Lebesgue measure on RN ), the function x! j (z; x) is locally Lipschitz and so,
by Rademacher�s theorem, it is almost everywhere di¤erentiable. Moreover, at
any such point r 2 R of di¤erentiability, we have

d

dr
j+ (z; r) 2 @j+ (z; r)

(see Clarke [18], p.32), hence

d

dr
j+ (z; r) � (� (z) + ") rp�1 + a" (z) for a.a. z 2 Z

(see (20)). Integrating this inequality on [0; x], x > 0, we obtain

j+ (z; x) �
1

p
(� (z) + ")xp + a" (z)x for a.a. z 2 Z, all x � 0 (21)

(recall that j+ (z; 0) = 0 a.e. on Z). So, if x 2W+, we have

'+ (x) =
1

p
kDxkpp �

Z
Z

j+ (z; x (z)) dz

� 1

p
kDxkpp �

1

p

Z
Z

� jxjp dz � "

p
kxkpp � ka"k1 kxk1

� �0
p
kDxkpp �

"

p�1
kDxkpp � c1 kDxkp

=
1

p

�
�0 �

"

�1

�
kDxkpp � c1 kDxkp ; (22)

for some c1 > 0 (see (49)). If we choose 0 < " < �1�0, from (22) and Poincaré�s
inequality, we infer that '+jW+

is coercive. Moreover, due to the compact
embedding of W 1;p

0 (Z) into Lp (Z), we verify easily that '+ is weakly lower
semicontinuous. So by the Weierstrass theorem, we can �nd x0 2W+ such that

�1 < m+ = inf
x2W+

'+ (x) = '+ (x0) :

17



Hypothesis H (j) (v) implies that given " > 0, we can �nd � = � (") > 0 such
that for almost all z 2 Z, all 0 < x � � and all u 2 @j+ (z; x), we have

(�1 (z)� ")xp�1 � u (23)

From (23) as above, we obtain

1

p
(�1 (z)� ")xp � j+ (z; x) for a.a. z 2 Z, all 0 < x � �: (24)

If u1 2 int C+ is the Lp-normalized principal eigenfunction, we can �nd � > 0
small, such that

�u1 (z) 2 (0; �] for all z 2 Z: (25)

Then by (24) and (25) we get

'+ (�u1) =
�p

p
kDu1kpp �

Z
Z

j+ (z; �u1 (z)) dz

� �p

p
kDu1kpp �

�p

p

Z
Z

(�1 (z)� ") ju1 (z)jp dz (26)

=
�p

p

�Z
Z

(�1 � � (z))u1 (z)p dz + "
�

(since we assumed ku1kp = 1). Since u1 (z) > 0 for all z 2 Z, we see that

b� = Z
Z

(�1 � � (z))u1 (z)p dz < 0:

Thus, if we choose " < �b�, from (26) we see that

'+ (�u1) < 0,

hence
m+ = '+ (x0) < 0 = '+ (0) , i.e. x0 6= 0

From Clarke [?], p.52, we have

0 2 @'+ (x0) +NW+
(x0) , (27)

with NW+
(x0) being the normal cone to W+ at x0. By de�nition,

NW+
(x0) =

n
u� 2W�1;p0 (Z) : hu�; y � x0i � 0 for all y 2W+

o
(28)

(see Gasinski-Papageorgiou [28], p.526). From (27), we can �nd x� 2 @'+ (x0)
such that

�x� 2 NW+ (x0) : (29)

From (13), we know that

x� = A (x0)� u0 with u0 2 N+ (x0) :

18



So from (28) and (29), we have

0 � hA (x0)� u0; y � x0i for all y 2W+: (30)

Let " > 0 and h 2W 1;p
0 (Z) be given and set

y = (x0 + "h)
+
= x0 + "h+ (x0 + "h)

� 2W+:

We use this as a test function in (30) and we obtain

0 � " hx�; hi+
D
x�; (x0 + "h)

�
E

hence
�
D
x�; (x0 + "h)

�
E
� " hx�; hi : (31)

We let Z�" = fz 2 Z : (x0 + "h) (z) < 0g. We know that

D
h
(x0 + "h)

�
i
(z) =

�
�D (x0 + "h) (z) if z 2 Z�"
0 otherwise

: (32)

Then

�
D
x�; (x0 + "h)

�
E

= �
D
A (x0) ; (x0 + "h)

�
E
+

Z
Z

u0 (x0 + "h)
�
dz

= �
Z
Z

kDx0kp�2
�
Dx0; D (x0 + "h)

�
�
RN

dz +

Z
Z

u0 (x0 + "h)
�
dz: (33)

We estimate both integrals in the right hand side of (33). So by using (32) we
have

�
Z
Z

kDx0kp�2
�
Dx0; D (x0 + "h)

�
�
RN

dz

=

Z
Z�"

kDx0kp�2 (Dx0; D (x0 + "h))RN dz

� "

Z
Z�"

kDx0kp�2 (Dx0; Dh)RN dz (34)

= "

Z
Z�" \fx0>0g

kDx0kp�2 (Dx0; Dh)RN dz

since x0 2W+ and by Stampacchia�s theorem, we have

Dx0 (z) = 0 a.e. on fx0 = 0g

(see Gasinski-Papageorgiou [28], p.195). Also we haveZ
Z

u0 (x0 + "h)
�
dz = �

Z
Z�"

u0 (x0 + "h) dz � 0 (35)
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(see hypothesis H (j) (vi)).
We return to (33) and use (34) and (35). Then

�
D
x�; (x0 + "h)

�
E
� "

Z
Z�" \fx0>0g

kDx0kp�2 (Dx0; Dh)RN dz;

hence

hx�; hi �
Z
Z�" \fx0>0g

kDx0kp�2 (Dx0; Dh)RN dz (36)

(see (31)). Since jZ�" \ fx0 > 0gjN ! 0 as " # 0, if we pass to the limit as " # 0
in (36), we obtain

0 � hx�; hi for all h 2W 1;p
0 (Z) ,

hence
A (x0) = u0: (37)

From (37) we infer that(
�div

�
kDx0 (z)kp�2Dx0 (z)

�
= u0 (z) a.e. on Z;

x0j@Z = 0:
(38)

From (38) and nonlinear regularity theory, we have that x0 2 C+, x0 6= 0. Then
(38) and hypothesis H (j) (vi) imply

div
�
kDx0 (z)kp�2Dx0 (z)

�
� c0x0 (z)

p�1 a.e. on Z. (39)

From (39) and the nonlinear strict maximum principle of Vasquez [51], we obtain
x0 2 int C+. So from (9) we conclude that x0 2 int C+ is a solution of problem
(8).
Similarly, working with the truncated locally Lipschitz functional '� we

obtain a second solution v0 2 �int C+:

5 Spectrum of the negative p-Laplacian

In this section we determine some important spectral properties of the negative
p-Laplacian with Dirichlet and Neumann boundary conditions. Before passing
to the study of the spectral properties of the p-Laplacian let summarize the
situation with the scalar eigenvaue problems (i.e., N = 1) (for details see [27],
p.93).
Consider �rst the case of the scalar Laplacian with Dirichlet boundary con-

ditions �
�x00 (t) = �x(t) a. e. on (0; b)
x (0) = x (b) = 0

(40)

We say thar � 2 R is an eigenvalue of the negative scalar Laplacian
�
�x00;W 1;2 (0; b)

�
if the problem (40) has a nontrivial solution x 2 W 1;2 (0; b) ; which is called a
corresponding eigenfunction.
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It is wel known that
�
�x00;W 1;2 (0; b)

�
has a sequence of eigenvalues 0 <

�1 � �2 � ::: � �n ! 1 and the eigenfunctions form an ortonormal basis of
L2 (0; b) : Namely, the eigenvalues of

�
�x00;W 1;2 (0; b)

�
are�

�n =
�n�
b

�2
: n � 1

�
and the eigenfunctions are(

un (t) =

r
2

b
sin
�n�
b
t
�2
: n � 1

)

Similarly, instead of (40) we can consider the Neumann problem�
�x00 (t) = �x(t) a. e. on (0; b)
x0 (0) = x0 (b) = 0

(41)

and in this case the eigenvalues are

�n = (
n�

b
)2 for n � 0

and the eigenfunctions are

u0 (t) =
1p
b
and un (t) =

r
2

b
sin
�n�
b
t
�2

for n � 1

Finally we consider the periodic problem:

�x00 (t) = �x(t) a. e. on (0; b)
x (0) = x (b) ; x0 (0) = x0 (b) ;

(42)

and again we can say that there exists a sequence of eigenvalues 0 = �0 < �1 �
�2 � ::: � �n !1 and the eigenfunctions form an ortonormal basis of L2 (0; b) :
More precisely we have

�n = (
n�

b
)2 for n � 0

and

u0 (t) =
1p
b
and un (t) = 2 cos

�
2n�

b
t

�
; for n � 1:

Now we brie�y mention what is the situation with the eigenvalue problems
for the scalar ordinary p-Laplacian. For details see Drabek�Manasevich [?] and
Gasiński�Papageorgiou ([?], Section 6.3).
For 1 < p <1 we consider the Dirichlet problem:(

�
�
jx0 (t)jp�2 x0 (t)

�0
= � jx0 (t)jp�2 x0 (t) a. e. on (0; b)

x (0) = x (b) = 0:
(43)
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A number � 2 R is called an eigenvalue of the negative scalar p-Laplacian with
Dirichlet conditions, if the problem (43) has a nontrivial solution. which is
called a corresponding eigenfunction.
For this case, there exists eigenvalues 0 < �1 � �2 � ::: � �n !1 and the

corresponding eigenfunctions un for n � 1; where

�Dn := (
n�p
b
)p and uDn := a sinp(

n�pt

b
) for n � 1;

with

�p = 2 (p� 1)
1
p

1Z
0

dt

(1� tp)
1
p

=
2� (p� 1)

1
p

p sin
�
�
p

�
(observe that �2 = �) and sinp : R! R is de�ned by

sinp tZ
0

ds�
1� sp

p�1

� 1
p

= t; for any t 2
h
0;
�p
2

i

and then extent to all of R in a similar way as for sin (:) (for details we refer to
Otani[43], [44] and del Pino-Elgueta-Manasevich [21]).
Next we consider the Neumann problem(

�
�
jx0 (t)jp�2 x0 (t)

�0
= � jx0 (t)jp�2 x0 (t) a. e. on (0; b)

x0 (0) = x0 (b) = 0:
(44)

A number � 2 R is called an eigenvalue of the negative scalar p-Laplacian with
Neumann conditions, if the problem (44) has a nontrivial solution. which is
called a corresponding eigenfunction.
For this case, there exists eigenvalues �0 < �1 � �2 � ::: � �n !1 and the

corresponding eigenfunctions un for n � 0; where

�N0 = 0; �
N
n = (

n�p
b
)p and uN0 = c 2 Rn f0g ; uNn (t) = uDn

�
t� b

2n

�
, for n � 1:

Finaly, we deal with the periodic eigenvalue problem(
�
�
jx0 (t)jp�2 x0 (t)

�0
= � jx0 (t)jp�2 x0 (t) a. e. on (0; b)

x (0) = x (b) ; x0 (0) = x0 (b) :
(45)

Then all the eigenvalues of the ordinary p-Laplacian with periodic boundary
conditions are the following:

�P0 = 0; �
P
n = �D2n; u

P
0 = c 2 Rn f0g and uPn (t) = uD2n (t) , for n � 1:
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Remark 25 The situation is much complicated if instead of the scalar ordinary

p-Laplacian consideramos the vector ordinary p-Laplacian �
�
kx0 (t)kp�2 x0 (t)

�0
with x 2W 1;p

�
(0; b) ;RN

�
: For the vectorial ordinary p-Laplacian with periodic

boundary conditions, the spectrum is far from beiing understood (see [27], p.
95).

Now we turn our attention to the study of the spectral properties of the
p-Laplacian di¤erential operator

4px = div
�
krxkp�2RN rx (z)

�
; 1 < p <1: (46)

Let Z � Rn be a bounded domain with a C2 boundary @Z; m 2 L1 (Z)+,
m 6= 0 be a weight function. We consider two weightead (with weight m)
eigenvalues problems, one with Dirichlet boundary conditions�

�4px (z) = �m (z) jx (z)jp�2 x (z) a.e. on Z;
xj@Z = 0

(47)

and the other with Neumann boundary conditions:�
�4px (z) = �m (z) jx (z)jp�2 x (z) a.e. on Z;
@x
@n = 0 on @Z:

(48)

De�nition 26 We say that a number � 2 R is an eigenvalue of (the Dirichlet p-
Laplacian)

�
�4p;W

1;p
0 (Z) ;m

�
if problem (47) has a nontrivial solution, which

is known as an eigenfunction corresponding to �:

De�nition 27 We say that a number � 2 R is an eigenvalue of (the Neu-
mann p-Laplacian)

�
�4p;W

1;p (Z) ;m
�
if problem (48) has a nontrivial solu-

tion, which is known as an eigenfunction corresponding to �:

Let consider �rst the case of Dirichlet p-Laplacian. If the weight m = 1 then
we simply write

�
�4p;W

1;p (Z)
�
instead of

�
�4p;W

1;p (Z) ; 1
�
: It is known

(see [28], p. 732, 739 745) that problem (47) has a smallest eigenvalue denoted
by �1 (m), with the following properties: �1 (m) > 0; �1 (m) is isolated and
simple (i.e. the corresponding eigenspace is one-dimensional). Moreover, �1 (m)
admits the following variational characterization

�1 (m) = inf

8>><>>:
kDukppZ
Z

m jujp dz
: u 2W 1;p

0 (Z) ; u 6= 0

9>>=>>; : (49)

In (49) the in�mum is actually realized at a corresponding eigenfunction
u1 2 C10

�
Z
�
:
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Note that if u1 is a solution of the minimization problem (49), then so does
ju1j and so we may assume that u1 (z) � 0 for all z 2 Z: In fact invoking the
strict maximum principle of Vasquez [51], we have

u1 (z) > 0 for all z 2 Z and
@u1
@n

(z) < 0 for all z 2 @Z: (50)

If m; m0 2 L1 (Z)+, 0 � m (z) � m0 (z) a.e. on Z with strict inequalities
on sets (not necessarily the same) of positive measure, then �1 (m0) < �1 (m)
(see Anane-Tsouli [7]).
If m � 1, then we write �1 = �1 (1) : Finally, if u 2W 1;p

0 (Z) is an eigenfunc-
tion corresponding to an eigenvalue b� 6= b�1 (m), then u 2 C10 �Z� must change
sign. The Banach space

C10
�
Z
�
=
�
x 2 C1

�
Z
�
: x j@Z= 0

	
; (51)

is an ordered Banach space with order cone

C10
�
Z
�
+
=
�
x 2 C10

�
Z
�
: x (z) � 0 for all z 2 Z

	
:

This order cone has a nonempty interior, given by

int C10
�
Z
�
+
=
�
x 2 C10

�
Z
�
: x (z) > 0 8z 2 Z and

@x

@n
(z) < 0 8z 2 @Z

�
: (52)

Note that from (51) and (52), we infer that u1 2 int C10
�
Z
�
+
.

Let us also recall a few basic facts about the spectrum of the negative p�
Laplacian with Neumann boundary condition. Details can be found in Lê [36]
and Gasinski-Papageorgiou [28]. The linear subspace of W 1;p (Z) generated
by the eigenfunctions corresponding to an eigenvalue b� 2 R is the eigenspace
corresponding to b� and it is denoted by E �b�� :
There exists the smallest eigenvalue b�0 (m) = 0: It is isolated and simple

(i.e., E
�b�0 (m)� = R). There is a variational caracterization of b�0 (m) via the

Rayleigh quotient, namely

0 = b�0 (m) = inf ( kDxkppR
Z
m jxjp dz : x 2W

1;p (Z) ; x 6= 0
)
: (53)

Here and in what follows, k:kp denotes the norm in Lp (Z) or in Lp
�
Z;RN

�
:

Evidently, constant functions (i.e., functions in E
�b�0 (m)�) realize the in-

�mum. According to the Lusternik-Schnirelmann theory, in addition to b�0 =b�0 (m) ; we have a whole strictly increasing sequence nb�k (m)o
k�0

� R+ of

eigenvalues such that b�k := b�k (m)!1 as k !1:
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These eigenvalues are called the variational eigenvalues or Lusternik-Schnirelmann
eigenvalues ((LS)-eigenvalues for short) of

�
�4p;W

1;p (Z) ;m
�
: In what fol-

lows, by � (p;m) we denote the set of all eigenvalues of
�
�4p;W

1;p (Z) ;m
�
:

It is easy to see that � (p;m) � R+ is closed andnb�k (m)o
k�0

� � (p;m) :

If p = 2 (linear eigenvalue problem), then

� (2;m) =
nb�k (m)o

k�0
;

i.e., the variational eigenvalues are all the eigenvalues of
�
�4;H1 (Z) ;m

�
:

If p 6= 2 (nonlinear eigenvalue problem), then we do not know if this is the
case. However, since � (p;m) is closed, we can de�ne

b��1 (m) = inf n� : � 2 � (p;m) ; � > b�0o
and this is the second eigenvalue of

�
�4p;W

1;p (Z) ;m
�
: We have

b��1 (m) = b�1 (m) :
So, the �rst two eigenvalues of

�
�4p;W

1;p (Z) ;m
�
coincide with the �rst two

variational eigenvalues.
In the remaing of this section we present some further results concerning the

spectrum of
�
�4p;W

1;p (Z) ;m
�
; obtained in the joint paper [4], which will be

used in the study of boundary value problems.from the next sections and are
also of independent interest.
In what follows, if m � 1; then we write �1 (p) = b�1 (1) to emphasize the

dependence on p; since we will investigate the dependence of the eigenvalue on
p 2 (1;+1) : Let

'm (x) =

Z
Z

m jxjp dz;  m (x) =
Z
Z

m jxjp dz + kDxkpp for all x 2W
1;p (Z) ;

S ( m) =
�
x 2W 1;p (Z) :  m (x) = 1

	
(54)

and

Ak = fC � S ( m) : C is compact, symmetric and e (C) � kg

where e is the Krasnoselskii genus [28] . From the Lusternik-Schnirelmann
theory we have the following characterization of the variational eigenvaluesnb�k (m)o

k�0
(for this reason they are called variational):

1b�k (m) + 1 = sup
C2Ak

inf
x2C

'm (x) for all k � 1: (55)
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Note that these sup inf - expresions are nonlinear versions of the well-known
minimax characterizations of the eigenvalues of

�
�4;H1 (Z)

�
(linear eigenvalue

problem) due to Courant (see for example Gasinski-Papageorgiou [28], p.718).
Of all of the eigenfunctions of

�
�4p;W

1;p (Z) ;m
�
; only the principal ones

(i.e., the ones belonging to the eigenspace E
�b�0 (m)� = E (0)) do not change

sign. All the others are nodal functions. In our study we will work with the
Sobolev space W 1;p (Z) ; whose norm is given by

kuk =
�
kukpp + kDuk

p
p

� 1
p

:

The variational characterization of �1 (p) given in (53) is not convenient for
our purposes, and for this reason we need to come up with new ones. The �rst
alternative variational characterization of �1 (p) is well known (see for example
Gasinski-Papageorgiou [28]).

Proposition 28 If for 1 < p <1,

C1 (p) :=

8<:x 2W 1;p (Z) : kxkp = 1;
Z
Z

jx (z)jp�2 x (z) dz = 0

9=; ;

then
�1 (p) = min

n
kDukpp : u 2 C1 (p)

o
:

Let
u0 (z) =

1

jZj
1
p

N

for all z 2 Z

be the normalized principal eigenfunction of
�
�4p;W

1;p (Z) ;m
�
; where by j:jN

we denote the Lebesgue measure on RN : Inspired by a corresponding result for
the Dirichlet p�Laplacian (see Cuesta-de Figueiredo-Gossez [?]), we can prove
a third variational characterization of �1 (p) :
In what follows

@BL
p

1 =
n
x 2 Lp (Z) : kxkp = 1

o
:

Proposition 29 If Sp =W 1;p (Z) \ @BLp1 and

�p = f 2 C ([�1; 1] ; Sp) :  (�1) = �u0;  (1) = u0g ;

then
�1 (p) = min

2�p
max

�1�t�1
kD (t)kpp :

In what follows, we set

Spc := Sp \ C1
�
Z
�

26



furnished with the C1
�
Z
�
topology. Recall that

Sp =W 1;p (Z) \ @BL
p

1

furnished with theW 1;p (Z)-norm. Evidently, Spc is dense in S
p for theW 1;p (Z)-

norm. Therefore C ([�1; 1] ; Spc ) is dense in C ([�1; 1] ; Sp) :
Next, we consider the map p ! �1 (p) : Using the last two propositions, we

prove that this map is continuous.

Proposition 30 The map �1 : (1;1)! (0;1) is continuous.

From Section 2, we know that for every 1 < p <1; the principal eigenvalue
�0 (p) = 0 is isolated. We will show that this isolation of the principal eigenvalue,
is uniform with respect to p belonging in a bounded closed subinterval of (1; p) :

Proposition 31 If 1 < a < b <1 and I = [a; b] ; then one can �nd � > 0 such
that for all p 2 I; �1 (p) =2 (0; �) :

Proof. Suppose we can �nd a sequence fpngn�1 � I such that

�1 (pn)! 0 as n!1:

Since I is compact, we may assume that pn ! p 2 I: By virtue of Proposition
3, we have that �1 (p) = 0: Since the principal eigenvalue �0 (p) = 0 is isolated,
we have a contradiction.
The next proposition establishes a monotonicity property of b�1 (m) with

respect to the weight function m 2 L1 (Z)+ : It extends a corresponding result
proved for the Dirichlet eigenvalues by Anane and Tsouli [7], and its proof can
be found in [1].

Proposition 32 If m; m1 2 L1 (Z)+ ; m 6= 0 and m (z) < m1 (z) a.e. on Z;
then b�1 (m1) < b�1 (m) :
6 Method of upper-lower solutions

The method of upper and lower solutions provides an e¤ective tool to produce
existence theorems for �rst and second order initial and boundary value prob-
lems and to generate monotone iterative techniques which provide constructive
methods (amenable to numerical treatment), to obtain solutions. We shall apply
this method to several boundary value problems. One is this:�

�4px (z) + � jx (z)jp�2 x (z) = f (z; x (z)) a.e. on Z;
@x
@n = 0 on @Z:

(56)

where Z � Rn is a bounded domain with a C2 boundary @Z; 4px (z) =

div
�
kDx (z)kp�2RN Dx (z)

�
; 1 < p < 1; is the p�Laplacian di¤erential oper-

ator, � > 0 and f (z; x) is a Carathéodory nonlinearity. We want to prove a
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three solutions theorem for problem (56) ; when the nonlinearity f (z; :) exhibits
a (p� 1) -sublinear behavior near the origin (concave nonlinearity).
Recently, there have been some multiplicity results for Neumann problems

driven by the p�Laplacian di¤erential operator. We mention the works of Anello
[8], Binding-Drabek-Huang [10], Bonanno-Candito [11], Faraci [24], Filippakis-
Gasinski-Papageorgiou [25], Motreanu-Papageorgiou [11], Ricceri [48] and Wu-
Tan [54]. In Anello [8], Bonanno-Candito [11], Faraci [24] and Ricceri [49],
the authors consider nonlinear eigenvalue problems and prove the existence of
multiple solutions when the nonlinearity is oscillating and the parameter belongs
to an open interval in R+: In these works, the key assumption is that p > N
(low dimensional problem), which implies that the Sobolev space W 1;p (Z) is
embedded compactly in C

�
Z
�
: The approach in all these papers is essentially

similar, and is based on an abstract variational principle due to Ricceri [48].
In Wu-Tan [54], it is again assumed that p > N and the approach (which is
variational) is based on the critical point theory. Binding-Drabek-Huang [10]
considered problems with a particular right-hand side nonlinearity, of the form
�a (z) jxjp�2 x + b (z) jxjq�2 x; with a; b 2 L1 (Z) ; � 2 R; 1 < p < N and
1 < q < p�; where p� is the critical Sobolev exponent given by

p� =

� Np
N�p if p < N

+1 if p � N:
(57)

They prove the existence of one or two positive solutions. Finally, we should
also mention the recent work [3], which is concerned with problem (56) with

a p� superlinear potential F (z; x) =
xR
0

f (s; x) ds (where f (z; :) satis�es the

Ambrosetti-Rabinowitz condition). The authors prove multiplicity theorems,
providing precise information about the sign of the solutions.
None of the aforementioned works treats nonlinearities which are concave

near the origin. Problems with concave nonlinearities were considered in the
context of semilinear problems (i.e., p = 2) or Dirichlet problems, by de Paiva-
Massa [20], Li-Wu-Zhou [37], Perera [46] and Wu-Yang [53]. For Dirichlet prob-
lems with the p-Laplacian, we mention the work of Garcia Azorero-Manfredi-
Peral Alonso [26], where a nonlinear eigenvalue problem is considered, with a
nonlinearity of the form � jxjr�2 x+ jxjq�2 x; with � > 0 and 1 < r < p < q < p�

(concave-convex nonlinearity). Their work extended earlier results for the semi-
linear case by Ambrosetti-Brezis-Cerami [6].
Our approach here is di¤erent from all of the above works. It combines

variational techniques with the method of upper-lower solutions and with Morse
theory (in particular, critical groups).
In this section we produce two nontrivial smooth solutions of constant sign

(one positive and the other negative) by employing variational arguments in
combination with the method of upper-lower solutions. The third solution will
be obtained in the last section of this paper by using suitable tools from Morse
theory.
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In the analysis of problem (56) we will use the following two spaces:

W 1;p
n (Z) =

�
x 2W 1;p (Z) : xk ! x in W 1;p (Z) ; xk 2 C1

�
Z
�
;
@xk
@n

= 0 on @Z
�

and

C1n
�
Z
�
=

�
x 2 C1

�
Z
�
:
@x

@n
= 0 on @Z

�
;

where by Z we denote the closure of the domain Z: Both are ordered Banach
spaces, with order cones given by

W+ =
�
x 2W 1;p

n (Z) : x (z) � 0 a.e. on Z
	

and respectively

C+ =
�
x 2 C1n

�
Z
�
: x (z) � 0 for all z 2 Z

	
:

We know that int C+ 6= ? (where int stands for the interior), with

intC+ =
�
x 2 C+ : x (z) > 0 for all z 2 Z

	
:

In what follows, by k:kp we denote the norm of Lp (Z) (or Lp
�
Z;RN

�
); and by

k:k the norm of W 1;p (Z) : The norm of W 1;p
n (Z) is also denoted by k:k :

The next result, due to Aizicovici, Papageorgiou and Staicu [3], compares
C1n
�
Z
�
and W 1;p

n (Z)� local minimizers for a large class of energy functionals.
It extends to Neumann problems earlier results by Brezis-Nirenberg [13] (for
p = 2) and by Garcia Azorero-Manfredi-Peral Alonso [26] (for p 6= 2); which
were concerned with Dirichlet boundary conditions.
So, consider a nonlinearity bf : Z�R!R satisfying the following hypotheses:

(H0) (i) for all x 2 R, z ! bf (z; x) is measurable;
(ii) for almost all z 2 Z, x! bf (z; x) is continuous;
(iii) for almost all z 2 Z and all x 2 R��� bf (z; x)��� � ba (z) + bc jxjr�1 ;

where ba 2 L1 (Z)+, bc > 0 and 1 < r < p�; with p� de�ned by (??) :

Let bF (z; x) = R x
0
bf (z; s) ds and consider the functional b' : W 1;p

n (Z) ! R
de�ned by

b' (x) = 1

p
kDxkpp �

Z
Z

bF (z; x (z)) dz for all x 2W 1;p
n (Z) :

Evidently b' 2 C1 �W 1;p
n (Z)

�
:
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Proposition 33 Let (H0) be satis�ed. If x0 2 W 1;p
n (Z) is a local C1n

�
Z
�
�

minimizer of b'; i.e., there exists �1 > 0 such thatb' (x0) � b' (x0 + h) for all h 2 C1n �Z� ; khkC1
n(Z)

� �1;

then x0 2 C1n
�
Z
�
and it is a local W 1;p

n (Z)� minimizer of b'; i.e., there exists
�2 > 0 such thatb' (x0) � b' (x0 + h) for all h 2W 1;p

n (Z) ; khk � �2:

Next let us recall the notions of upper and lower solutions for problem (56) :

De�nition 34 (a) An upper solution for problem (56) is a function x 2 C1
�
Z
�

such that
@x

@n
� 0 on @Z

and Z
Z

kDxkp�2RN (Dx;Dh)RN dz + �

Z
Z

jxjp�2 xhdz �
Z
Z

f (z; x)hdz

for all h 2W+: We say that x is a strict upper solution for problem (??) ; if it
is an upper solution but it is not a solution of (56) :
(b) A lower solution for problem (56) is a function x 2 C1

�
Z
�
such that

@x

@n
� 0 on @Z

and Z
Z

kDxkp�2RN (Dx;Dh)RN dz + �

Z
Z

jxjp�2 xhdz �
Z
Z

f (z; x)hdz

for all h 2W+: We say that x is a strict lower solution, if it is a lower solution
but it is not a solution of (56) :

Assume 1 < p < 1 and the hypotheses on the nonlinearity f (z; x) are the
following:

H (f) : f : Z � R! R is a function such that f (z; 0) = 0 a.e. on Z and

(i) for all x 2 R, z ! f (z; x) is measurable;

(ii) for almost all z 2 Z, x! f (z; x) is continuous;

(iii) for every � > 0; there exists a� 2 L1 (Z)+ such that

jf (z; x)j � a� (z) for a.a. z 2 Z and all jxj � �:

(iv) there exists � 2 L1 (Z)+ such that � (z) � � a.e. on Z; with strict
inequality on a set of positive measure, and if F (z; x) =

R x
0
f (z; s) ds,

then

lim sup
jxj!1

pF (z; x)

jxjp � � (z) uniformly for a.a. z 2 Z;
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(v) there exist � > 0; r 2 (1; p) and c0 > 0 such that

c0 jxjr � F (z; x) for a.a. z 2 Z and all jxj � �;

(vi) for almost all z 2 Z; we have

f (z; x)x � 0 for all x 2 R (sign condition)

and
pF (z; x)� f (z; x)x > 0 for all x 6= 0:

Remark 35 Hypothesis H (f) (v) implies that the nonlinearity f (z; :) exhibits
an (r � 1)� sublinear growth near the origin (concave nonlinearity near the
origin). For example, the nonlinearity

f (x; x) = � (z) jxjp�2 x+ jxjr�2 x

with 1 < r < p and � 2 L1 (Z)+ as in assumption H (f) (iv) ; satis�es hypothe-
ses H (f) :

First, we will produce a strict upper solution of (56) : By virtue of hypotheses
H (f) (iii) ; (iv) and (vi) ; given " > 0; we can �nd �" 2 L1 (Z)+ ; �" 6= 0 and
�" > 0 such that

(� (z) + ")xp�1 + �" (z)� f (z; x) � �" > 0 for a.a. z 2 Z and all x � 0: (58)

To produce a strict upper solution for problem (56) ; we will need the fol-
lowing lemma, which underlines the signi�cance of the nonuniform resonance
hypothesis H (f) (iv) :

Lemma 36 If � 2 L1 (Z)+ ; � (z) � � a.e. on Z; with strict inequality on a

set of positive measure, then there exists b�0 > 0 such that
 (x) = kDxkpp + � kxk

p
p �

Z
Z

� (z) jx (z)jp dz � b�0 kxkp for all x 2W 1;p (Z) :

Proof. Note that  � 0: We argue by contradiction. So, suppose that the
lemma is not true. Exploiting the p-homogeneity of  ; we can �nd a sequence
fxngn2N �W 1;p (Z) such that

kxnk = 1 and  (xn) # 0:

By passing to a suitable subsequence we may assume that

xn
w�! x in W 1;p (Z) and xn ! x in Lp (Z) :

Then we have

kDxkpp � lim inf
n!1

kDxnkpp , � kxnk
p
p ! � kxkpp
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and Z
Z

� (z) jxn (z)jp dz !
Z
Z

� (z) jx (z)jp dz:

So, in the limit as n!1; we obtain

kDxkpp + � kxk
p
p �

Z
Z

� (z) jx (z)jp dz;

hence

kDxkpp �
Z
Z

(� (z)� �) jx (z)jp dz � 0; (59)

therefore
x � c 2 R:

If c = 0; then kDxnkp ! 0 and so xn ! 0 in W 1;p (Z) ; a contradiction to the
fact that kxnk = 1 for all n � 1: So, c 6= 0: From (59) ; we have

0 � jcjp
Z
Z

(� (z)� �) dz < 0;

again a contradiction. This proves the Lemma.

Proposition 37 If hypotheses H (f) hold, then problem (56) admits a strict
upper solution x 2 int C+:

Proof. Consider the nonlinear operator bKp : L
p (Z) ! Lp

0
(Z)

�
1
p +

1
p0 = 1

�
de�ned by bKp (x) (:) = jx (:)jp�2 x (:) for all x 2 Lp (Z) :

Clearly bKp is continuous and bounded (i.e., it maps bounded sets to bounded
ones). Moreover, by virtue of the compact embedding of W 1;p (Z) into Lp (Z) ;
it follows that

Kp = bKp jW 1;p(Z):W
1;p (Z)!W 1;p (Z)

�

is completely continuous (i.e., it is sequentially weakly-strongly continuous).
Therefore, by the previous Remark, the map V :W 1;p (Z)!W 1;p (Z)

� de�ned
by

V (x) = A (x) + �Kp (x)� (� (:) + ")Kp (x)

is pseudomonotone. Also, for every x 2W 1;p (Z) ; we have

hV (x) ; xi = kDxkpp + (� � ") kxk
p
p �

Z
Z

� (z) jx (z)jp dz �
�b�0 � "� kxkp (60)

(see Lemma 48). Choosing 0 < " < b�0, from(??) we infer that V is coercive. But
a pseudomonotone coercive operator is surjective (see Gasinski-Papageorgiou
[28], p.336). Therefore, we can �nd x 2W 1;p (Z) such that

V (x) = A (x) + �Kp (x)� (� + ")Kp (x) = �"; (61)
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where �" is as in (58) : Since �" 6= 0; (61) implies that x 6= 0: Recall that

x = x+ � x�, with x+ = max fx; 0g and x� = �min fx; 0g :

On (61) we act with the test function �x� 2W 1;p
n (Z) and we obtainDx�p

p
+ �

x�p
p
�
Z
Z

� (z)
��x� (z)��p dz � " x�p � 0;

hence �b�0 � "�x�p � 0 (62)

(see Lemma 48). Inasmuch as " < b�0; from (62) it follows that x� = 0; hence x �
0; x 6= 0: On account of (61) and the nonlinear Green identity (cf. Motreanu-
Papageorgiou [41]), we get8<: �4px (z) + �x (z)

p�1
= (� (z) + ")x (z)

p�1
+ �" (z) a.e. on Z;

@x
@n = 0 on @Z:

(63)

From (63) and Theorem 7.1, p.286 of Ladyzhenskaya-Uraltseva [35], we deduce
that x 2 L1 (Z) : Then, invoking Theorem 2 of Lieberman [37], we infer that
x 2 C+:
Note that (63) implies

4px (z) � �x (z)
p�1 a.e. on Z:

Hence, by virtue of the nonlinear strong maximum principle of Vazquez [51],
we obtain x (z) > 0 for all z 2 Z: Suppose that for some z0 2 @Z; we have
x (z0) = 0: Then, from Vazquez [51] (Theorem 5), it follows that

@x

@n
(z0) < 0;

which contradicts (63) : This proves that x (z) > 0 for all z 2 Z; i.e., x 2 int C+:
Because of (58) ; we see that x 2 int C+ is a strict upper solution for problem
(56) in the sense of De�nition 1(a).
Let g 2 L1 (Z) and consider the following Neumann problem�

�4px (z) + � jx (z)jp�2 x (z) = g (z) a.e. on Z;
@x
@n = 0 on @Z:

(64)

From the maximal monotonicity and coercivity of the operator x ! A (x) +
�Kp (x) ; we infer that the problem (64) has a solution S (g) 2W 1;p

n (Z) ; which
is unique due to the strict monotonicity of the operator. Moreover, the nonlinear
regularity theory implies that S (g) 2 C1n

�
Z
�
: We examine the monotonicity

properties of the map g ! S (g) :

Lemma 38 The map S : L1 (Z) ! C1
�
Z
�
is increasing, i.e., if g1 � g2 in

L1 (Z) ; then S (g1) � S (g2) in C1
�
Z
�
:
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Proof. Suppose that g1; g2 2 L1 (Z) and assume that g1 � g2 in L1 (Z) (i.e.,
g1 (z) � g2 (z) a.e. on Z): Set x1 = S (g1) ; x2 = S (g2) : Then

A (x1) + �Kp (x1) = g1 and A (x2) + �Kp (x2) = g2:

We haveD
A (x2)�A (x1) ; (x1 � x2)+

E
+ �

R
fx1>x2g

�
jx2jp�2 x2 � jx1jp�2 x1

�
(x1 � x2) dz

=
R
Z
(g2 � g1) (x1 � x2)+ dz � 0

hence R
fx1>x2g

�
kDx2kp�2RN Dx2 � kDx1kp�2RN Dx1; Dx1 �Dx2

�
Rn
dz

+�
R
fx1>x2g

�
jx2jp�2 x2 � jx1jp�2 x1

�
(x1 � x2) dz � 0:

(65)

But, due to the strict monotonicity of the map RN 3 � ! k�kp�2RN � and R 3 y !
jyjp�2 y; the left hand side of (65) is strictly negative, a contradiction unless

jfx1 > x2gjN = 0;

where by j:jN we denote the Lebesgue measure on RN . Hence x1 � x2:
Note that x � 0 is a solution of the problem (56) : We truncate the nonlin-

earity f (z; x) at the pair f0; xg ; namely we introduce

bf+ (z; x) =
8>>><>>>:
0 if x � 0

f (z; x) if 0 � x � x (z)

f (z; x (z)) if x (z) � x:

Evidently, bf+ (z; x) is a Carathédory function, i.e., for all x 2 R; z ! bf+ (z; x)
is measurable and for almost all z 2 Z; x! bf+ (z; x) is continuous. We set

bF+ (z; x) = xZ
0

bf+ (z; s) ds
(the primitive of bf+ (z; :)) and consider the functional b'+ : W 1;p

n (Z) ! R
de�ned by

b'+ (x) = 1

p
kDxkpp +

�

p
kxkpp �

Z
Z

bF+ (z; x (z)) dz for all x 2W 1;p
n (Z) :

We also consider ' : W 1;p
n (Z)! R; the Euler functional for the problem (??) ;

de�ned by

' (x) =
1

p
kDxkpp +

�

p
kxkpp �

Z
Z

F (z; x (z)) dz for all x 2W 1;p
n (Z) :

Clearly, b'+; ' 2 C1 �W 1;p
n (Z)

�
:
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Proposition 39 If hypotheses H (f) hold, then problem (56) admits a solution
x0 2 int C+; which is a local minimizer of ':

Proof. Exploiting the compact embedding of W 1;p
n (Z) into Lp (Z) ; we can

easily check that b'+ is sequentially weakly lower semicontinuous. Moreover,
note that we can �nd M1 > 0 such that������

Z
Z

bF+ (z; x (z)) dz
������ �M1 for all x 2W 1;p

n (Z) :

Hence b'+ is coercive. Invoking the theorem of Weierstrass (see [28], p.711), we
can �nd x0 2W 1;p

n (Z) such that

b'+ (x0) = inf �b'+ (x) : x 2W 1;p
n (Z)

	
: (66)

We claim that x0 6= 0: To this end, let � > 0 be as in hypothesis H (f) (v) and
let c 2 (0; �] : Then

b'+ (c) = �
p c
p jZjN �

R
Z

F (z; c) dz

� �
p c
p jZjN � c0cr jZjN (see hypothesis H (f) (v))

= jZjN cr
�
�
p c
p�r � c0

� (67)

Since p > r; if we choose c 2 (0; �] small, then from (66) and (67) it follows that

b'+ (x0) � b'+ (c) < 0
hence

x0 6= 0: (68)

From (66) ; we have b'0+ (x0) = 0;
hence

A (x0) + �Kp (x0) = bN+ (x0) ; (69)

where bN+ (x) (:) := bf+ (:; x (:)) for all x 2 W 1;p
n (Z) : On (69) ; we act with the

test function �x�0 2W 1;p
n (Z) and obtain

0
x�0  � 0 with 0 = min f�; 1g

hence
x�0 = 0; i.e., x0 � 0; x0 6= 0 (see (68)):

From (69) it follows that�
�4px0 (z) + �x0 (z)

p�1
= bf+ (z; x0 (z)) a.e. on Z;

@x0
@n = 0 on @Z:

(70)
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The nonlinear regularity theory implies that x0 2 C+: Due to the sign condition
(see hypothesis H (f) (vi)); we have

bf+ (z; x0 (z)) � 0 a.e. on Z: (71)

From (70) and (71) it follows that

4px0 (z) � �x0 (z)
p�1 a.e. on Z;

which, by virtue of the nonlinear maximum principle of Vasquez [?], implies
that

x0 2 int C+:

From Proposition 4 we know that x 2 int C+ is a strict upper solution for
problem (56) : So, according to De�nition 1(a), we have

A (x) + �Kp (x) > N (x) = bN+ (x0) in W 1;p
n (Z)

�
; (72)

where N (x) (:) = f (:; x (:)) for all x 2W 1;p
n (Z) : From (69) and (72) we obtain

A (x)�A (x0) + � (Kp (x)�Kp (x0)) > bN+ (x)� bN+ (x0) in W 1;p
n (Z)

�
: (73)

On (73) ; we act with the test function (x0 � x)+ 2W 1;p
n (Z) : Then, arguing as

in the proof of Lemma 48, we infer that

jfx0 > xgjN = 0;

therefore
x0 � x:

Hence (70) becomes�
�4px0 (z) + �x0 (z)

p�1
= f (z; x0 (z)) a.e. on Z;

@x0
@n = 0 on @Z:

Let 0 < � < minZ x and consider v� = x� � 2 int C+: Then

�4pv� (z) + �v� (z)
p�1 � �4px (z) + �x (z)

p�1 � � (�) ; (74)

with � 2 C (R+) ; � � 0 and � (�) ! 0+ as � ! 0+: Choosing � > 0 small and
using (58) ; we have

(� (z) + ")x (z)
p�1

+ �" (z)� � (�) � f (z; x0 (z)) +
�"
2
for a.a. z 2 Z: (75)

From (63) ; (74) and (75) ; it follows that for � > 0 small, we have

h� (z) = �4pv� (z) + �v� (z)
p�1 (76)

> f (z; x0 (z)) = �4px0 (z) + �x0 (z)
p�1 a.e. on Z:
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Since h�, f (:; x0 (:)) 2 L1 (Z) ; from (76) and Lemma 48 we infer that for � > 0
small

x0 (z) � v� (z) for all z 2 Z;

hence
x (z)� x0 (z) � � > 0 for all z 2 Z;

therefore
x� x0 2 int C+:

Inasmuch as x0 2 int C+; we can �nd r > 0 small such that

b'+ j
B
C10(Z)
r (x0)

= ' j
B
C10(Z)
r (x0)

;

hence x0 2 int C+ is a local C1n
�
Z
�
�minimizer of '. Invoking Proposition 45,

we conclude that x0 2 int C+ is a localW 1;p
n (Z)�minimizer of '; and of course

it solves problem (56) :
We repeat the same process on the negative half-axis. So, because of hy-

potheses H (f) (iii) ; (iv) and (vi) ; given " > 0; we can �nd " 2 L1 (Z)+ ;
" 6= 0 and b�" > 0 such that
(� (z) + ") jxjp�2 x� " (z) � f (z; x)� b�" for a.a. z 2 Z and all x � 0. (77)

We consider the following auxiliary Neumann problem8<:
�4pv (z) + � jv (z)jp�2 v (z)

= (� (z) + ") jv (z)jp�2 v (z)� " (z) a.e. on Z;
@v
@n = 0 on @Z:

(78)

Arguing as in the proof of Proposition 51, we can �nd v 2 �int C+; a solution
of problem (78) : By virtue of (77) ; we see that v is a strict lower solution for
problem (56) : Then, truncating the nonlinearity f (z; :) at the points fv (z) ; 0g
and reasoning as in the proof of Proposition 51 we obtain:

Proposition 40 If hypotheses H (f) hold, then problem (56) admits a solution
v0 2 �int C+ which is a local minimizer of '

Combining Propositions 51 and 52, we can summarize the results of this
section in the following Theorem.

Theorem 41 If hypotheses H (f) hold, then problem (56) admits two constant
sign smooth solutions x0 2 int C+ and v0 2 �int C+; which are local minimizers
of the Euler functional ':
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7 Degree theory

Degree theory is a basic tool of nonlinear analysis and produces powerful exis-
tence and multiplicity results for nonlinear boundary value problems.
It concerns operator equations of the form '(x) = y0, where ' is a map

(often continuous) of U , the closure of an open set U of the domain space X,
into the range space Y and y0 2 Y satis�es y0 =2 '(@U). Then the degree of S
at y0 relative to U , written d(';U; y0), is an algebraic count of the number of
solutions of the equation

'(x) = y0:

In particular the equation '(x) = y0 will have solutions in U , whenever

d(';U; y0) 6= 0:

Here we shall deal with degree theories, where the value of the degree map
is an integer. This integer can be both positive or negative and in the context
of �nite dimensional problems positive counts (positive degree) correspond to
solutions at which ' is orientation preserving, while negative counts correspond
to solutions at which ' is not orientation preserving.
We start with a brief analytical presentation of Brouwer�s degree theory,

which is the �rst such theory and was introduced by Brouwer in 1912.

De�nition 42 Let U � RN be a nonempty, bounded open set and ' 2 C1(U;RN ).
We say that x 2 U is a critical point of ', if

J'(x) = detr'(x) = 0; where r'(x) =
�
@'i
@xj

(x)

�N
i;j=1

:

Let
C' := fx 2 U : J'(x) = 0g:

The set '(C') is called the crease of ': If y =2 '(C'), then y is called a regular
value of '.

De�nition 43 If ' 2 C1(U;RN ) and y =2 ['(C') [ '(@U)], then the degree of
' at y with respect to U is de�ned by

d(';U; y) =
X

x2'�1(y)

sgn (J'(x)) ;

where sgn (u) = 1 if u > 0 and sgn (u) = �1 if u < 0:

Note that since y is not a critical value, the set '�1(y) is discrete and so the
summation in the previous De�nition is �nite.
The determinant J'(x) is positive or negative according as ' is orientation

preserving or orientation reversing at x.
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De�nition 44 Let U � RN be a bounded open set and ' 2 C(U;RN ) and y =2
'(@U), then we de�ne dB(';U; y) to be equal to d(b';U; y), where b' 2 C1(U;RN )
satis�es

k'(x)� b'(x)k < d (y; '(@U)) for all x 2 U:
In fact it is easy to check that in the above De�nition we can choose b' 2

C1(U;RN ) such that y =2 b'(Cb').
This way we have concluded the de�nition of Brouwer�s degree which has

been de�ned for the class C(U;RN ). In the next theorem we summarize the
basic properties of Brouwer�s degree.

Theorem 45 If U� RN is a bounded open set, ' 2 C(U;RN ) and y =2 '(@U)
then:
(i) (Normalization:) dB(Id; U; y) = 1 for all y 2 U ;
(ii) (Aditivity with respect to domain:) If U1; U2 are disjoint open subsets

of U and y =2 '
�
U n (U1 [ U2)

�
, then

dB(';U; y) = dB(';U1; y) + dB(';U2; y);

(iii) (Homotopy invariance): if h : [0; 1]�U �! RN is a continuous map and
y =2 h(t; @U) for all t 2 [0; 1], then dB(h(t; �); U; y) is independent of t 2 [0; 1];
(iv) (Dependence on the boundary values:) if b' 2 C(U;RN ) and 'j@U =b'j@U , then

dB(';U; y) = dB(b';U; y);
(v) (Excision property:) if K � U is closed and y =2 '(K), then

dB(';U; y) = dB(';U nK; y);

(vi) (Continuity with respect to ':) if b' 2 C(U) and k'�b'k1 < d (y; '(@U)),
then dB(b';U; y) is de�ned and equals dB(';U; y);
(vii) (Existence property:) If dB(';U; y) 6= 0 then '�1(y) 6= ?.

Suppose now that X is a re�exive Banach space. Then by the Troyanski
renorming theorem (see Gasinski-Papageorgiou [?], p.911), we can equivalently
renorm X so that both X and X� are locally uniformly convex and with Fréchet
di¤erentiable norms. So, in what follows, we may assume that both X and X�

are locally uniformly convex. Hence, if F : X ! X� is the duality map de�ned
by

F (x) =
n
x� 2 X� : hx�; xi = kxk2 = kx�k2

o
,

we have that F is a homeomorphism.

De�nition 46 An operator A : X ! X�, which is single-valued and every-
where de�ned, is said to be of type (S)+, if for every sequence fxngn�1 � X

such that xn
w! x in X and

lim sup
n!1

hA (xn) ; xn � xi � 0;

one has xn ! x in X.
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Let U be a bounded open set in X and let A : U ! X� be a demicontinuous
operator of type (S)+. Let fX�g�2J be the family of all �nite dimensional
subspaces of X and let A� be the Galerkin approximation of A with respect to
X�, that is

hA� (x) ; yiX�
= hA (x) ; yi

for all x 2 U \X� and all y 2 X�. By h�; �iX�
we denote the duality brackets

for the pair (X�; X
�
�).

De�nition 47 For x� =2 A (@U), the degree map d(S)+ (A;U; x
�) is de�ned by

d(S)+ (A;U; x
�) = dB (A�; U \X�; x

�)

for X� large enough (in the sense of inclusion), where Here dB stands for the
classical Brouwer degree map. If X is separable and A is bounded (maps bounded
sets to bounded ones), then we can use only a countable subfamily fXngn�1 of
fX�g�2J such that [

n�1
Xn = X. More details on the degree map d(S)+ can be

founded in Browder [14] and Skrypnik [50].

De�nition 48 Let 2X
�n f?g be the family of all nonempty subsets of Y �: A

multivalued map (or multifunction) G : X ! 2X
�n f?g is said to be upper

semicontinuous (usc for short) if, for every closed set C � X�, we have that

G� (C) = fx 2 X : G (x) \ C 6= ?g

is closed in X.

The generalized subdi¤erential x ! @' (x) is an usc multifunction from X
with the norm topology into X� furnished with the w�-topology.

De�nition 49 We say that a multifunction G : X ! 2X
�n f?g belongs in class

(P ), if it is usc, for every x 2 X, G (x) is closed, convex and for every bounded
subset A � X, we have

G (A) = [
x2A

G (x)

is relatively compact in X�.

From Cellina [16] (see also Hu-Papageorgiou [31], p.106), we know that:

Theorem 50 If D � X is an open subset and if G : D ! 2X
�n f?g is an usc

multifunction with closed and convex values, then given any " > 0, we there
exists a continuous map g" : D ! X� (called approximate selection of G) such
that

g" (x) 2 G ((x+B") \D) +B�"
for all x 2 D and g" (D) � conv G (D). Here

B" = fx 2 X : kxk < "g and B�" = fx� 2 X� : kx�k < "g :
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Note that, if the multifunction G belongs in class (P ), then the continuous
approximate selection g" is compact.

De�nition 51 If G : X ! 2X
�n f?g is a multifunction belonging in class

(P ) ;then for every x� =2 (A+G) (@U), bd (A+G;U; x�) is de�ned bybd (A+G;U; x�) := d(S)+ (A+ g"; U; x
�)

for " > 0 small, where g" is the continuous approximate selection of Ggiven by
the previous Theorem.

Note that since G belongs in class (P ), g" : U ! X� is compact and so
x 7�! A (x) + g" (x) is still of type (S)+. More about the degree map bd, can be
found in Hu-Papageorgiou [30], [31].
One of the fundamental properties of a degree map is the homotopy invari-

ance property. To formulate this property for the degree map bd, we need to
de�ne the admissible homotopies for A and G.

De�nition 52 (a) A one-parameter family fAtgt2[0;1] of maps from U into X�,

is said to be a homotopy of class (S)+, if for any fxngn�1 � U such that xn
w! x

and for any ftngn�1 � [0; 1] with tn ! t for which

lim sup
n!1

hAtn (xn) ; xn � xi � 0,

one has xn ! x in X and Atn (xn)
w! At (xn) in X� as n!1.

(b) A one-parameter family fGtgt2[0;1] of multifunctions Gt : U ! 2X
�n f?g

is said to be a homotopy of class (P ), if (t; x) 7�! G (t; x) is usc from T � X
into 2X

�n f?g, for every (t; x) 2 [0; 1]� U the set is closed, convex and[�
Gt (x) : t 2 [0; 1] ; x 2 U

	
is compact in X�.

With these admissible homotopies for A and G, the homotopy invariance
property of bd can be formulated as follows:

"If fAtgt2[0;1] is a homotopy of class (S)+ such that for every t 2
[0; 1], At is bounded, fGtgt2[0;1] is a homotopy of class (P ) and
x� : [0; 1]! X� is a continuous map such that

x�t =2 (At +Gt) (@U) for all t 2 [0; 1] ,

then bd (At +Gt; U; x�t ) is independent of t 2 [0; 1]."
Also the normalization property has the following form:bd (F ; U; x�) = d(S)+ (F ; U; x

�) = 1 for all x� 2 F (U) .

Both degree maps d(S)+ and
bd have all the usual properties mentioned for

Briwer degree in Theorem 25, such as normalization, homotopy invariance, so-
lution property, additivity with respect to the domain, excision property, etc.
For further details and applications we refer to [2].
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8 Degree theoretic approach

Consider again the problem from Section 7, where we proved the existence of
two constant sign solutions by varitional method. In this section we want to
empoy degree theory in order to prove the existence of the third soution under
assumptions under assumptions H (j) :
So our problem is the following�

�4px (z) 2 @j (z; x (z)) a.e. on Z;
x j@Z= 0; 1 < p <1; (79)

and let ' :W 1;p
0 (Z)! R be the Euler functional for problem (79) de�ned by

' (x) =
1

p
kDxkpp �

Z
Z

j (z; x (z)) dz for all x 2W 1;p
0 (Z) :

Also for the multivalued Nemytskii operator N : Lp (Z) ! 2L
p0 (Z) from

Aizicovici-Papageorgiou-Staicu [2], we have:

Proposition 53 If hypotheses H (j) hold, then the multivalued operator N :

Lp (Z) ! 2L
p0 (Z) has nonempty, w-compact, convex values and it is usc from

Lp (Z) with the norm topology into Lp
0
(Z) with the weak topology.

From the Sobolev embedding theorem, we know that W 1;p
0 (Z) is embedded

compactly and densely in Lp (Z) : It follows that Lp
0
(Z) = Lp (Z)

� is embedded
compactly and densely in W�1;p0 (Z) =W 1;p

0 (Z)
�
: So from Proposition 45, we

deduce the following:

Corollary 54 If hypotheses H (j) hold and N = N jW 1;p
0 (Z) : W

1;p
0 (Z) !

2W
�1;p0 (Z)n f?g, then N is a multifunction of class (P ).

From Theorem 4 and its proof, we know that x0 2 int C+ (resp. v0 2 �int
C+) is a minimizer of '+(resp. '�): Since '+ jC+= ' (resp. '� jC�= ')

we infer that x0; v0 are both local C10
�
Z
�
� minimizers of '. But then from

Gasinski-Papageorgiou [27], p. 655-656 (see also Kyritsi-Papageorgiou [34]),
we have that x0 and v0 are local W

1;p
0 (Z) - minimizers of ': Therefore from

Aizicovici-Papageorgiou-Staicu [2], we have

Proposition 55 If hypotheses H (j) hold and x0 2 int C+; v0 2 �int C+ are
the solutions obtained in Theorem 44, then there exists r > 0 small such thatbd (@';Br (x0) ; 0) = bd (@';Br (v0) ; 0) = 1:
Next we calculate the bd degree of @' for small balls.

Proposition 56 If hypotheses H (j) hold, then there exists �0 > 0 such thatbd (@';B�; 0) = bd (A�N;B�; 0) = 0 for all 0 < � � �0:
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Proof. Let K+ :W
1;p
0 (Z)!W�1;p0 (Z) be the mapping de�ned by

K+ (x) (�) =
�
x+ (�)

�p�1
for all x 2W 1;p

0 (Z) :

Evidently, this is a completely continuous map (recall that Lp
0
(Z) is embedded

compactly into W�1;p0 (Z) =W 1;p
0 (Z)

�
): So, if we consider the map h1 : [0; 1]�

W 1;p
0 (Z)!W�1;p0 (Z) de�ned by

h1 (t; x) = A (x)� (1� t) �1K+ (x)� tN (x) for all (t; x) 2 [0; 1]�W 1;p
0 (Z) ;

then h1 (:; :) is an admissible homotopy.
Claim: There exists �0 > 0 such that 0 =2 h2 (t; x) for all t 2 [0; 1] ; all

kxk = � and all 0 < � � �0:
We argue indirectly. So suppose that the Claim is not true. Then we can

�nd ftngn�1 � [0; 1] and fxngn�1 �W 1;p
0 (Z) such that

tn ! t 2 [0; 1] , kxnk ! 0 and 0 2 h1 (tn; xn) for all n � 1: (80)

From the inclusion in (80), we have

A (xn) = (1� tn) �1K+ (xn) + tnun with un 2 N (xn) for all n � 1: (81)

Setting
yn =

xn
kxnk

we have

A (yn) = (1� tn) �1K+ (yn) + tn
un

kxnkp�1
for all n � 1:

Moreover, by passing to a subsequence if necessary, we may assume that

yn
w! y in W 1;p

0 (Z) , yn ! y in Lp (Z) , yn (z)! y (z) a.e. on Z

and

jyn (z)j � k (z) a.e. on Z, for all n � 1 and some k 2 Lp
0
(Z)+ :

By virtue of hypotheses H (j) (iii), (iv) and (v), we have that

juj � c1 jxjp�1 for a.a. z 2 Z; all x 2 R and all u 2 @j (z; x) ; (82)

with c1 > 0: Relation (82) implies that(
un

kxnkp�1

)
n�1

� Lp
0
(Z) is bounded.

So we may assume that

un

kxnkp�1
w! h0 in Lp

0
(Z) for some h0 2 Lp

0
(Z) : (83)
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For every " > 0 and n � 1, we introduce the sets

C+";n =

(
z 2 Z : xn (z) > 0, �1 (z)� " �

un (z)

xn (z)
p�1 � �2 (z) + "

)

and

C�";n =

(
z 2 Z : xn (z) < 0, � " �

un (z)

jxn (z)jp�2 xn (z)
� "

)
:

Note that xn (z) ! 0+ a.e. on fy > 0g and xn (z) ! 0� a.e. on fy < 0g : So,
by virtue of hypothesis H (j) (v), we have

�C+
";n
(z)! 1 a.e. on fy > 0g and �C�

";n
(z)! 1 a.e. on fy < 0g :

Using (83) ; we obtain

�C+
";n

un

kxnkp�1
w! h0 in Lp

0
(fy > 0g)

and
��

C
�
";n

un

kxnkp�1
w! h0 in Lp

0
(fy < 0g) :

From the de�nitions of the sets C+";n and C
�
";n; we have

�C+
";n
(z) (�1 (z)� ") yn (z)p�1 � �C+

";n
(z)

un (z)

kxnkp�1

� �C+
";n
(z) (�2 (z) + ") yn (z)

p�1 a.e. on fy > 0g

and

��C�
";n
(z) " jyn (z)jp�1 � �C�

";n
(z)

un (z)

kxnkp�1

� �C�
";n
(z) " jyn (z)jp�1 a.e. on fy < 0g :

Taking weak limit in Lp
0
(fy > 0g) and Lp

0
(fy < 0g) respectively and using

Mazur�s lemma we obtain

(�1 (z)� ") y (z)p�1 � h0 (z) � (�2 (z) + ") y (z)p�1 a.e. on fy > 0g

and
�" jy (z)jp�1 � h0 (z) � " jyn (z)jp�1 a.e. on fy < 0g :

Passing to the limit as " # 0; yields

�1 (z) y (z)
p�1 � h0 (z) � �2 (z) y (z)

p�1 a.e. on fy > 0g (84)

and
h0 (z) = 0 a.e. on fy < 0g : (85)
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Moreover, it is clear from (82) that

h0 (z) = 0 a.e. on fy = 0g : (86)

From (84) ; (85) and (86) it follows that

h0 (z) = g0 (z) y
+ (z)

p�1 a.e. on Z (87)

with
g0 2 L1 (Z)+ ; �1 (z) � g0 (z) � �2 (z) a.e. on Z:

Note that

hA (yn) ; yn � yi (88)

=

Z
Z

 
(1� tn) �1

�
y+n
�p�1

+ tn
un

kxnkp�1

!
(yn � y) dz ! 0 as n!1:

But A is of type (S)+ (see Proposition 5). So from (87) it follows that

yn ! y in W 1;p
0 (Z) , hence kyk = 1; i.e. y 6= 0:

Moreover, in the limit as n!1; we have

A (y) = �K+ (y)

where � 2 L1 (Z)+ ; � = (1� t) �1 + tg0: Hence acting with the test function
�y� 2W 1;p

0 (Z) ; we see that y � 0; y 6= 0: Therefore(
�div

�
kDy (z)kp�2Dy (z)

�
= � (z) jy (z)jp�2 y (z) a.e. on Z,

yj@Z = 0; y 6= 0.
(89)

Note that �1 � � (z) a.e. on Z; �1 6= �: Therefore

b�1 (�) < b�1 (�1) = 1: (90)

Combining (89) and (90), we infer that y 2 C1
�
Z
�
must change sign, a contra-

diction to the fact that y � 0: So the Claim is true.
Then the homotopy invariance property, impliesbd (A�N;B�; 0) = bd (A� �1K+; B�; 0) for all 0 < � � �0: (91)

To compute bd (A� �1K+; B�; 0) ; we consider the homotopy h2 : [0; 1]�W 1;p
0 (Z)!

W�1;p0 (Z) de�ned by

h2 (t; x) = A (x)� �1K+ (x)� t�, for all (t; x) 2 [0; 1]�W 1;p
0 (Z) ;

with � 2 L1 (Z)+ ; � 6= 0: Suppose that h2 (t; x) = 0 for all t 2 [0; 1] and all
kxk = �: Then

A (x) = �1K+ (x) + t�:
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Acting with the test function �x� 2W 1;p
0 (Z) ; we obtain x � 0: Hence(

�div
�
kDx (z)kp�2Dx (z)

�
= �1 (z) jx (z)jp�2 x (z) + t� (z) a.e. on Z,

xj@Z = 0; x 6= 0

and this by the antimaximum principle of Godoy-Gossez-Paczka [29] implies
that x 2 �int C+, a contradiction to the fact that x � 0. Sobd (A� �1K+; B�; 0) = bd (A� �1K+ � �;B�; 0) = 0 for all 0 < � � �0;

hence bd (A�N;B�; 0) = 0 for all 0 < � � �0

(see (91)):
Next we conduct a similar computation for large balls. In this case we have:

Proposition 57 If hypotheses H (j) hold, then there exists R0 > 0 such thatbd (@';BR; 0) = bd (A�N;BR; 0) = 1 for all R � R0:

Proof. We consider the admissible homotopy h3 : [0; 1]�W 1;p
0 (Z)! 2W

�1;p0 (Z)

de�ned by
h3 (t; x) = A (x)� tN (x)� (1� t) �K (x)

where K (x) = jxjp�2 x:
Claim: There exists R0 > 0 such that 0 =2 h3 (t; x) for all t 2 [0; 1] and all

x 2W 1;p
0 (Z) with kxk = R and all R � R0:

As in the previous proof, we argue by contradiction. So suppose we can �nd
ftngn�1 � [0; 1] and fxngn�1 �W 1;p

0 (Z) such that

tn ! t 2 [0; 1] , kxnk ! +1

and
A (xn) = tnun + (1� tn) �K (xn) with un 2 N (xn) ; n � 1:

If
yn =

xn
kxnk

; n � 1;

then
A (yn) = tn

un

kxnkp�1
+ (1� tn) �K (yn) : (92)

Arguing as in the previous proof, using this time hypothesis H (j) (iv) ; we
obtain

yn ! y in W 1;p
0 (Z) ; hence kyk = 1;

and

un

kxnkp�1
w! h = g jyjp�2 y with g 2 L1 (Z)+ ; g (z) � � (z) a.e. on Z:
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So, if we pass to the limit as n!1 in (92) ; we obtain

A (y) = b�K (y) with b� 2 L1 (Z) ; b� = tg + (1� t) � � �;

hence(
�div

�
kDy (z)kp�2Dy (z)

�
= b� (z) jy (z)jp�2 y (z) a.e. on Z,

yj@Z = 0:
(93)

But b�1 �b�� > b�1 (�1) = 1:
So from (93) it follows that y = 0; a contradiction to the fact that kyk = 1: So
the Claim is true.
Then the homotopy invariance property implies that

bd (A�N;BR; 0) = bd (A� �K;BR; 0) for all R � R0 (94)

But from Drabek-Kufner-Nicolosi [22], we have

bd (A� �K;BR; 0) = 1 for R > 0: (95)

So from (94) and (95), we conclude that

bd (A�N;BR; 0) = 1 for all R � R0:

Now we are ready for the three solutions theorem for problem (79) :

Theorem 58 If hypotheses H (j) hold, then problem (79) has at least three
nontrivial solutions x0 2 int C+, v0 2 �int C+ and y0 2 C10

�
Z
�
:

Proof. We already have two solutions x0 2 int C+, v0 2 �int C+ from Theorem
4. Then from the domain additivity and excision properties of the degree we
have

bd (A�N;BR; 0) = bd (A�N;B�; 0)
+ bd (A�N;Br (x0) ; 0) + bd (A�N;Br (v0) ; 0)
+ bd�A�N;BRn�B� [Br (x0) [Br (v0)� ; 0� (96)

with R � R0 large and r > 0 and 0 < � � �0 small such that

� < R; Br (x0) \B� = ? and Br (x0) ; B� (v0) � BR:

Then, using Propositions 47, 48 and 49, from (96) ; we obtain

�1 = bd�A�N;BRn�B� [Br (x0) [Br (v0)� ; 0� :
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From the solution property, we obtain y0 2 BRn
�
B� [Br (x0) [Br (v0)

�
;

hence y0 6= 0; y0 6= x0; y0 6= v0 such that

A (y0) = bu0 with bu0 2 N (y0) ;
hence (

�div
�
kD (y0) (z)kp�2D (y0) (z)

�
= bu0 (z) a.e. on Z,

(y0) j@Z = 0;

therefore y0 2 C10
�
Z
�
is a nontrivial solution of (79) ; distinct from x0 and v0:

9 Elements of Morse theory: critical groups

Now, let us recall some basic notions and results from Morse theory, which we
will need in the next section to produce a nontrivial smooth solution:
Let X be a Banach space and ' 2 C1 (X) :
For every c 2 R; let 'c = fx 2 X : ' (x) � cg be the sublevel set of ' at c,

K = fx 2 X : '0 (x) = 0g be the critical set of ' and letKc = fx 2 K : ' (x) = cg
be the critical set of ' at level c 2 R.
Let Y be a subspace of a Hausdor¤ topological space V and let n � 0 be an

integer. By Hn (V; Y ) we denote the nth- singular homology group of the pair
(V; Y ) with integer coe¢ cients.
If x0 2 X is an isolated critical point of ' with ' (x0) = c; then the critical

groups of ' at x0; are de�ned by

Cn ('; x0) = Hn ('
c \ U; ('c \ U) n fx0g) ; n � 0;

where U is a neighborhood of x0 such that K \ 'c \ U = fx0g :
By the excision property of the singular homology theory, we infer that the

above de�nition of critical groups is independent of U (see Chang [17], and
Mawhin-Willem [?]).
In what follows, we assume that ' satis�es the usual PS-condition. Namely,

if fxngn2N � X is a sequence such that j' (xn)j � M for some M > 0 and
all n � 1; and '0 (xn) ! 0 in X�; then fxngn2N has a strongly convergent
subsequence (see [17], p.20, [28], p.611, and [39], p. 81).
Assume that �1 < inf ' (K) and let c < inf ' (K) : Then, the critical groups

of ' at in�nity are de�ned by

Cn (';1) = Hn (H;'
c) for all n � 0;

(see Bartsch-Li [9]). The deformation lemma (see, for example, [?], p.21) implies
that this de�nition is independent of the choice of c:
If ' 2 C1 (X) and K = fx0g ; then Morse theory implies that

Cn ('; x0) = Cn (';1) for all n � 0:
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In particular, if x0 is an isolated critical point of ' and Cn ('; x0) 6= Cn (';1)
for some n � 0; then ' must have another critical point, distinct from x0:
Moreover, if K is �nite, then the Morse type numbers of ' are de�ned by

Mn =
X
x2K

rank Cn ('; x) ; n � 0;

and the Betti-type numbers of '; are de�ned by

�n = rank Cn (';1) ; n � 0:

By Morse theory (see Bartsch-Li [9], Chang [17], and Mawhin-Willem [39]),
we have the Poincaré-Hopf formulaX

n�0
(�1)nMn =

X
n�0

(�1)n �n: (97)

The next result is useful in the computation of critical groups at in�nity. It is
related to Lemma 2.4 of Perera-Schechter [47], where X is a Hilbert space.

Proposition 59 Let (X; k:k) be a Banach space of dual (X�; k:k�) and let
(t; x) ! 't (x) be a function in C1 ([0; 1]�X) ; such that x ! '0t (x) and
x ! @t't (x) are both locally Lipschitz. (Here by '0t (x) we denote the Frechet
derivative of x ! 't (x) and by @t't the derivative of t ! 't (x) :) If we can
�nd R > 0 such that

inf fk'0t (x)k� : t 2 [0; 1] ; kxk > Rg > 0 (98)

and
�R := inf f't (x) : t 2 [0; 1] ; kxk � Rg > �1; (99)

then for all c < �R; the set 'c0 is homemorphic to a subset of '
c
1:

Proof. Note that by virtue of (98) ; for every t 2 [0; 1] ; we have

Kt = fx 2 X : '0t (x) = 0g � BR; (100)

with BR = fx 2 X : kxk � Rg : Because of (100) ; and since by hypothesis
' 2 C1 ([0; 1]�X), it follows (see, for example, [39], p.127) that there ex-
ists a pseudogradient vector �eld bv = (v0; v) : [0; 1] �

�
XnBR

�
! [0; 1] � X

corresponding to ':
Recalling the construction of the pseudogradient vector �eld in Chang [?],

p.19, we see that we can take v0 (t; x) = @t't (x) :
By de�nition, the map (t; x) ! vt (x) is locally Lipschitz and in fact, for

every t 2 [0; 1] ; vt is a pseudogradient vector �eld corresponding to the function
't (see Chang [17], p.19). Hence, for every (t; x) 2 [0; 1]�

�
XnBR

�
; we have

h'0t (x) ; vt (x)i � k'0t (x)k
2
� ; (101)

49



where by h:; :i we denote the duality brackets for the pair (X�; X) : The map
w : [0; 1]�

�
XnBR

�
! X given by

wt (x) = �
j@t't (x)j
k'0t (x)k

2
�
vt (x) ; (102)

is well de�ned and locally Lipschitz. Because of (99) ; we can �x c 2 R;

c < inf f't (x) : t 2 [0; 1] ; kxk � Rg ; (103)

such that 'c0 6= ? or 'c1 6= ?: (If no such c can be found, then

Cn ('0;1) = Cn ('1;1) = �n;0Z

and so we are done). Without any loss of generality, we may assume that 'c0 6= ?
(the argument is similar if 'c1 6= ?): Let y 2 'c0 and consider the Cauchy problem

d

dt
� (t) = wt (� (t)) for all t 2 [0; 1] ; � (0) = y: (104)

From the local existence theorem (see Gasinski-Papageorgiou [28], p.618), we
know that (??) ; admits a local �ow � (t) : On account of (??) ; (??) and (??)
we have

d

dt
't (� (t)) =

�
'0t (� (t)) ;

d

dt
� (t)

�
+ @t't (� (t))

= h'0t (� (t)) ; wt (� (t))i+ @t't (� (t))
� � j@t't (� (t))j+ @t't (� (t))
� 0:

Therefore, t! 't (� (t)) is decreasing and so, we have

't (� (t)) � '0 (� (0)) = '0 (y) � c

(recall that y 2 'c0):Because of (??) ; we have that k� (t)k > R: Consequently,
'0t (� (t)) 6= 0 and so the �ow � is in fact global. Moreover, it can be reversed
by replacing 't by '1�t: Therefore, � (1) is a homeomorphism between 'c0 and
a subset of 'c1:

10 Multiple solutions by Morse theory

Consider again the problem (56) ; that is�
�4px (z) + � jx (z)jp�2 x (z) = f (z; x (z)) a.e. on Z;
@x
@n = 0 on @Z:

(105)

where Z � Rn be a bounded domain with a C2 boundary @Z and assumptions
H (f) are satis�ed. In this section, using Morse theory, we produce a third
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nontrivial smooth solution for problem (105) : Note that the Euler functional '
satis�es the PS-condition, as one can easily verify.
In view of Theorem 53 and recalling the characterization of the critical group

of a C1� functional at a local minimizer (see Chang [17], p.33 and Mawhin-
Willem [39], p.175), we have:

Proposition 60 If hypotheses H (f) hold, then Ck ('; x0) = Ck ('; v0) = �k;0Z
for all k � 0:
Next we compute the critical groups of ' at x = 0: Our approach is inspired

by the semilinear works of Moroz [40] and Wang [52].

Proposition 61 If hypotheses H (f) hold, then Ck ('; 0) = 0 for all k � 0:
Proof. By virtue of hypotheses H (f) (iii) ; (v) and (vi) ; we have

F (z; x) � c1 jxjr � c2 jxjp for a.a. z 2 Z and all x 2 R; (106)

with c1; c2 > 0: Then for t > 0 and x 2W 1;p
n (Z) ; x 6= 0;

' (tx) =
tp

p
kDxkpp +

tp�

p
kxkpp �

Z
Z

F (z; tx (z)) dz (107)

� tp

p
1 kxkp + tpc2 kxkpp � t

rc1 kxkrr

with 1 = max f�; 1g (see (106)): Because r < p; from (107) it follows that there
exists t0 = t0 (x) 2 (0; 1) such that

' (tx) < 0 for all t 2 (0; t0) : (108)

Next we show that for every x 6= 0
d

dt
' (tx) >

p

t
' (tx) for all t > 0: (109)

To this end, we remark that

d

dt
' (tx) = h'0 (tx) ; xi

= hA (tx) ; xi+ �tp�1
Z
Z

jxjp dz �
Z
Z

f (z; tx)xdz

= tp�1
�
kDxkpp + � kxk

p
p

�
� 1
t

Z
Z

f (z; tx) txdz

=
p

t

24 tp
p

�
kDxkpp + � kxk

p
p

�
� 1
p

Z
Z

f (z; tx) txdz

35
>
p

t

24 tp
p

�
kDxkpp + � kxk

p
p

�
�
Z
Z

F (z; tx) dz

35 (see H (f) (vi))

=
p

t
' (tx) ;

51



which proves (109) :
We assume that the origin is an isolated critical point of '; or otherwise we

have a whole sequence of distinct solutions of (105), and so, we are done. Let
� > 0 be small such that K\B� = f0g ; where K =

�
x 2W 1;p

n (Z) : '0 (x) = 0
	

and B� =
�
x 2W 1;p

n (Z) : kxk < �
	
:

We show that for any x 2 '0 \ B�; we have tx 2 '0 \ B� for all t 2 [0; 1]
(recall that '0 =

�
x 2W 1;p

n (Z) : ' (x) � 0
	
):We argue indirectly. So, suppose

that for some t0 2 (0; 1), we have ' (t0x) > 0: Then, by continuity, there exists
t1 2 (t0; 1] such that ' (t1x) = 0: We take t1 = min ft 2 [t0; 1] : ' (tx) = 0g :
Hence, ' (tx) > 0 for all t 2 [t0; t1) and so

d

dt
' (tx) jt=t1� 0: (110)

From (109) and (110) ; we have

0 =
p

t1
' (t1x) <

d

dt
' (tx) jt=t1� 0;

a contradiction. This proves that for all x 2 '0 \ B� and all t 2 [0; 1] ; tx 2
'0 \ B�: Therefore, for every t 2 [0; 1] ; the map x ! h (t; x) = (1� t)x maps
'0 \ B� into itself. Clearly, (t; x) ! h (t; x) is continuous and h (0; x) = x for
all x 2 '0 \ B�: Hence h is a continuous deformation of '0 \ B� to itself and
so, we conclude that '0 \B� is contractible into itself.
Next, we show that

�
'0 \B�

�
n f0g is contractible in itself. For this purpose,

we introduce the map T : B�n f0g ! (0; 1] by

T (x) =

�
1 if x 2

�
'0 \B�

�
n f0g

t if x 2 B�n f0g with ' (tx) = 0; t 2 (0; 1) :

From (108) and (109) it is clear that the map T is well de�ned and, if ' (x) > 0;
then there exists a unique T (x) 2 (0; 1) such that ' (tx) < 0 for all t 2 (0; T (x)) ;
' (T (x)x) = 0 and ' (tx) > 0 for all t 2 (T (x) ; 1] : Also, we have

d

dt
' (tx) jt=T (x)>

p

T (x)
' (T (x)x) = 0 (see (109)):

Invoking the implicit function theorem, we infer that x ! T (x) is continuous.
Let bh : B�n f0g ! �

'0 \B�
�
n f0g be de�ned by

bh (x) = � T (x)x if x 2 B�n f0g ; ' (x) � 0
x if x 2 B�n f0g ; ' (x) < 0:

The continuity of T implies the continuity of bh (note that T (x) = 1 for all
x 2 B�n f0g with ' (x) = 0): Clearly bh j'0\B�

= id j'0\B�
; hence bh is a re-

traction and so
�
'0 \B�

�
n f0g is a retract of B�n f0g : Because W 1;p

n (Z) is
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in�nite dimensional, B�n f0g is contractible in itself. Recall that retracts of con-
tractible spaces are contractible too. Therefore, we infer that

�
'0 \B�

�
n f0g is

contractible in itself. Consequently, from Mawhin-Willem [39], p.172, we have

Ck ('; 0) = Hk

�
'0 \B�;

�
'0 \B�

�
n f0g

�
for all k � 0:

Next, using Proposition 41, we will compute the critical groups at in�nity
for the functional ': Here we will need the restriction p � 2:

Proposition 62 If hypotheses H (f) hold and 2 � p <1; then

Ck (';1) = �k;0Z for all k � 0:

Proof. We consider the functions

(t; x)! 't (x) =
1

p
kDxkpp +

�

p
kxkpp � (1� t)

Z
Z

F (z; x (z)) dz;

for all (t; x) 2 [0; 1]�W 1;p
n (Z) : Clearly x! @t't (x) is locally Lipschitz. Also

'0t (x) = Ax + �Kp (x) � tN (x) : Since we assume 2 � p < 1; we see that
x ! '0t (x) is locally Lipschitz too. In order to apply Proposition 41 we need
to verify (98) and (99) : Clearly, (99) holds. So, it remains to check (98) : We
proceed by contradiction. So, suppose that (98) is not true. Then we can �nd
sequences ftngn�1 � [0; 1], fxngn�1 �W 1;p

n (Z) such that

tn ! t; kxnk ! 1 and '0tn (xn)! 0 in W 1;p
n (Z)

�
:

Then ��
'0tn (xn) ; u��� � "n kuk for all u 2W 1;p
n (Z) ; with "n # 0:

Let yn = xn
kxnk ; n � 1: By passing to a suitable subsequence if necessary, we

may assume that

yn
w�! y in W 1;p

n (Z) and yn ! y in Lp (Z) :

We have����hA (yn) ; ui+ � R
Z

jynjp�2 ynudz � (1� tn)
R
Z

N(xn)

kxnkp�1
udz

����
� "n kuk for all u 2W 1;p

n (Z) :
(111)

Hypotheses H (f) (iii) ; (iv) imply that
n

N(xn)

kxnkp�1

o
n�1

� Lp
0
(Z) ( 1p +

1
p0 = 1)

is bounded. So, setting u = yn � y in (111) ; we have

�

Z
Z

jynjp�2 yn (yn � y) dz ! 0 and
Z
Z

N (xn)

kxnkp�1
(yn � y) dz ! 0 as n!1:
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From (111) it follows that

lim
n!1

hA (yn) ; yn � yi = 0:

Invoking the fact that the nonlinear operator A :W 1;p
n (Z)!W 1;p

n (Z)
� de�ned

by

hA (x) ; yi =
Z
Z

kDxkp�2RN (Dx;Dy)RN dz for all x, y 2W
1;p
n (Z) :

is bounded, continuous, monotone and of type (S)+ (see, e.g., [2]), we have that

yn ! y in W 1;p
n (Z) ; (112)

hence
kyk = 1 and so y 6= 0: (113)

Reasoning as in the proof of Proposition 14 in Aizicovici-Papageorgiou-Staicu
[2], we can show that

hn =
N (xn)

kxnkp�1
w�! h in Lp

0
(Z) ; with h = g jyjp�2 y; g 2 L1 (Z)+ ; g � �:

(114)
Passing to the limit as n!1 in (111) and using (112) and (113) ; we obtain

hA (y) ; ui+ �
Z
Z

jyjp�2 yudz = (1� t)
Z
Z

g jyjp�2 yudz: (115)

Since u 2W 1;p
n (Z) is arbitrary, from (115) it follows that

A (y) + �Kp (y) = (1� t) gKp (y) :

Because tg � �; using Lemma 1, we have

b�0 kykp � 0; hence y = 0;
a contradiction to (??) : Therefore (??) holds for some R > 0: Applying Propo-
sition 2, we can say that for c < �R; '

c
0 is homeomorphic to a subset of '

c
1:

But note that by virtue of hypothesis H (f) (vi) ; '0 � '1; hence 'c1 � 'c0:
Therefore, 'c0 and '

c
1 are homeomorphic, and so

Ck ('0;1) = Ck ('1;1) for all k � 0: (116)

Note that

'0 (x) = ' (x) and '1 (x) =
1

p
kDxkpp +

�

p
kxkpp for all x 2W

1;p
n (Z) :

Clearly, '1 has only one critical point x = 0 and it is a global minimizer. Hence

Ck ('1;1) = Ck ('1; 0) = �k;0Z for all k � 0: (117)
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Since '0 = '; from (116) and (117) ; we conclude that

Ck (';1) = �k;0Z for all k � 0:

Now we are ready for the three solutions theorem for problem (??) :

Theorem 63 If hypotheses H (f) hold and 2 � p < 1; then problem (??)
has at least three nontrivial smooth solutions x0 2 int C+; v0 2 �int C+ and
y0 2 C1n

�
Z
�
:

Proof. From Theorem 1, we already have two nontrivial smooth solutions of
constant sign, namely x0 2 int C+ and v0 2 �int C+. Suppose that 0; x0 and
v0 are the only critical points of ': Then from the Poincaré-Hopf fomula (see
(??)) and Propositions 7, 8 and 9, we have

(�1)0 + (�1)0 = (�1)0

hence (�1)0 = 0; a contradiction. This shows that there must be a fourth
critical point y0 2 W 1;p

n (Z) of '; distinct from 0; x0 and v0: Evidently, y0 is
a solution of (??) ; and as before, the nonlinear regularity theory implies that
y0 2 C1n

�
Z
�
:

Remark 64 In fact, with some additional e¤ort, our work can be extended to
the case when in (??), the p-Laplacian is replaced by a more general operator of
the form div a (z;Dx (z)) ; with a (z; y) = DyG (z; y) ; where G : Z � RN ! R
is measurable in z 2 Z; of class C1 and convex in y 2 RN ; and satis�es (for all
z 2 Z; y 2 RN )

(a (z; y) ; y)RN � p G (z; y) and G (z; y) � c kykp for some c > 0:

References

11 Multivalued analysis: some complementat top-
ics

Control systems and di¤erential inclusions
Consider a controlled dynamical system

x0 = f (t; x; u) ; u (t) 2 U (118)

where U � Rm is a given set of control values and the the control of the system
is done by choosing u (:) in a class of admissible controls

U := fu : R! Rm : u is measurable and u (t) 2 U a.e. g ;
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For every (t; x) de�ne the set

F (t; x) = ff (t; x; !) : ! 2 Ug (119)

and remark that at a given time t and a given state x(t) , several velocities are
possible: x0 (t) has to belong to the set F (t; x (t)). So what really counts for the
dynamics, is this set, which can be described by a set-valued map F : R�Rn !
2R

n

, and the controlled di¤erential equation becomes a di¤erential inclusion

x0 2 F (t; x) : (120)

Remark 65 If x : I ! Rn is a trajectory of the system (118) ; (that is, x is
absolutely continuous in I for which there exists an admissible control u (:) 2 U
such that x0 (t) = f (t; x (t) ; u (t)) a.e.), then x (:) is a solution (or trajectory)
of the associated di¤erential inclusion (120) ; that is

x0 (t) 2 F (t; x (t)) a.e. t 2 I: (121)

Moreover, by Filippov�s lemma (1962) any solution of (120) is also a trajec-
tory of (118) ; therefore (118) and (120) have the same trajectories. This has
led to the simpli�cation of some proofs on the existence of optimal controls.
Although some papers on multivalued di¤erential equations, or di¤erential

inclusions, appeared in the literature before the middle of the century (Zaremba
(1936) and Marchaud (1938)) the subject began to interest mathematicians
seriously in the 1960s. Several motivations concurred, but one of them was the
interest in control theory and in optimal control.
What we obtained in (120) is an example of ordinary di¤erential inclusion

that is a relation of the kind

x0 2 F (t; x) . (122)

There are also the so called gradient inclusions,

ru (x) 2 F (x; u (x)) (123)

In the �rst case, one seeks a function x (:), in general in the class of ab-
solutely continuous functions, such that, for almost every t in some interval, the
derivative x0 (t) exists and is contained in the set F (t; x). In addition, initial or
boundary conditions may be prescribed.
In the second case, an open region 
 is given and one seeks a function u in

some Sobolev space W 1;p (
) whose Sobolev gradient, for almost every x 2 
,
is contained in F (x; u (x)) : In addition, auxiliary conditions, in general in the
form of Dirichlet boundary conditions, are prescribed.
Ordinary di¤erential inclusions
Here we will refer only the ordinary di¤erential inclusions. Let 2R

n

be the
family of nonempty subsets of Rn:

De�nition 66 F : R � Rn ! 2R
n

which assign to each (t; x) 2 R � Rn a
unique set F (t; x) � Rn is said to be a set-valued map, or multivalued map or
multifunction.
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To such a multifunction we associate the ordinary di¤erential inclusion

x0 2 F (t; x) : (124)

De�nition 67 By solution of (124) we mean an absolutely continuous function
x : I ! Rn de�ned in some interval I such

x0 (t) 2 F (t; x (t)) a.e. t 2 I: (125)

Di¤erential inclusions provide tools for the study of (discontinuous or im-
plicit) di¤erential equations. the equation f (t; x; x0) = 0 can be regarded as a
di¤erential inclusion(124) with

F (t; x) = fv : f (t; x; v) = 0g :

Existence of solutions
A �rst important problem was the existence of solutions. For this we need

some assumptions on F which are essentially of two di¤erent kinds:

� continuity is some sense to be speci�ed of the multivalued map F (up-
per semicontinuity, lower semicontinuity, continuity, Hausdor¤ continuity,
Lipschitzianity, etc.)

� geometric or topological properties of the images of the map F (these
images can be closed sets, convex sets, compact or unbounded, or can
have nonempty interior).

For the case of an inclusion, showing the existence of a solution is (consid-
erably) more di¢ cult than showing the existence of a solution for the case of
an ordinary di¤erential equation x0 (t) = f (t; x (t)) where f is continuous with
respect to x:
This fact is contrary to intuition. In fact, shouldn�t it be that, proving that

the point x0 equals the point f (t; x), is more di¢ cult than merely proving that
it is in a set F (t; x)?
Multivalued maps

De�nition 68 Let X and Y be two sets. We call multivalued map or set-
valued map or multifunction from X into Y an application F which assign to
every x 2 X an unique subset of Y; denoted F (x) and called the value of F in
x:

Denoting by 2Y the family of all subsets of Y; we remark that a multivalued
map from X into Y is a map from X into 2Y that we denote by F : X ! 2Y :
On the space 2Y or some of its subspace we can consider some topology that

allow to look to a multivalued map F : X ! 2Y as a ordinary map between the
space X (at least topological space) and the topological space space 2Y :
Hausdor¤ distance and Hausdor¤ continuity

57



Let (Y; dY ) be a metric space and C (Y ) be the space of closed bounded
subsets of Y . The Hausdor¤ distance on C (Y ) is de�ned by

dH (A;B) = max

�
sup
a2A

dY (a;B) ; sup
b2B

dY (b; A)

�
; for all A;B 2 C (Y ) :

where dY (a;B) = infb2B dY (a; b) is the distance from a 2 Y to B 2 C (Y ).
Equivalently,

dH (A;B) = inf f� > 0 : A � B (B; �) and B � B (A; �)g

where B (A; �) is the ��neighborhood around A de�ned by

B (B; �) = fx 2 Y : dY (x;A) < �:g

De�nition 69 Let X be a topological space and (Y; dY ) a metric space. A
multifunction F : X ! C (Y ) is said to be Hausdor¤ continuous if for every
x0 2 X and every " > 0 there exists a neighborhood U of x0 such that

dH (F (x) ; F (x0)) < " for every x 2 U:

Upper and lower semicontinuity

De�nition 70 Let X and Y be topological spaces. A multivalued map F : X !
2Y is said to be:
(a) lower semicontinuous at x0 2 X if for every y0 2 F (x0) and every V

neighborhood of y0 there exists U a neighborhood of x0 such that: x 2 U implies
F (x) \ V 6= ?;
(b) upper semicontinuous at x0 2 X if for every open set V � Y containing

F (x0) there exists a neighborhood U of x0 such that F (x) � V for all x 2 U ;
(c) continuous at x0 if it is both upper and lower semicontinuous at x0
(d) lower semicontinuous (upper semicontinuous, continuous) on X if it is

lower semicontinuous (upper semicontinuous, continuous) at each x0 2 X:
F : X ! 2Y is l.s.c. on X i¤ F+ (C) := fx 2 X : F (x) � Cg is closed in

X for every closed set C � Y ;
F : X ! 2Y is u.s.c. on X i¤ F� (C) := fx 2 X : F (x) \ C 6= ?g is closed

in X for every closed set C � Y:

Relations and properties
All these de�nitions coincide with the usual continuity when F is single

valued.
If F : X ! 2Y has compact values then F is continuous on X if and only if

it is Hausdor¤ continuous
The graph of a multivalued map F : X ! 2Y is the set

graph (F ) = f(x; y) 2 X � Y : y 2 F (x)g :

De�nition 71 We say that F : X ! 2Y has closed graph if for every x0 2 X
and every sequence (xn)n2N and (yn)n2N converging to x0 and y0; respectively
and such that yn 2 F (xn) for any n 2 N; one has that y0 2 F (x0) :
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Remark 72 If F : X ! 2Y is upper semicontinuous on X with closed values
then it has closed graph;
Conversely, if F has closed graph and there exists a compact set K � Y such

that F (x) � K for every x 2 X then F is upper semicontinuous on X:

Example 73 F1 : R! 2R de�ned by

F1 (x) =

8<: f1g if x < 0
f�1; 1g if x = 0
f�1g if x > 0

is upper semicontinuous at x0 = 0 (on R):
Indeed, if V is an open set containing F (0) = f�1; 1g then for � > 0 small

enough and for every x 2 (��; �) one has that F1 (x) � V:
F1 is not l.s.c. at x0 = 0 because taking y0 = 1 2 F (0) and V =

�
1
2 ;

3
2

�
neighborhood of y0 = 1, for every � > 0 there exists bx 2 (0; �) where F1 (bx)\V =
f�1g \

�
1
2 ;

3
2

�
= ?:

Example 74 F2 : R! 2R de�ned by

F2 (x) =

�
f0g if x = 0

[�1; 1] if x 6= 0

is l.s.c. at x0 = 0 but it is not u.s.c. at x0 = 0: Indeed for every V neighborhood
of y0 = 0 2 F2 (0) there exists � > 0 such that for every x 2 (��; �) one has that
F2 (x) \ V 6= ?; hence F2 is l.s.c. at x0 = 0:

F2 is not upper at x0 = 0 because V =
�
� 1
2 ;

1
2

�
contains F2 (0) and for every

� > 0 and any bx 2 (0; �), F2 (bx) is not contained in V; hence F is not u.s.c. at
x0 = 0:

Existence results
Simplest case: F upper semicontinuous with compact convex values (Zaremba

(1936), Marchaud (1938), Filippov (1963), Wazewski (1961);
Hermes question (1970): prove existence for the di¤erential inclusion x0 2

F (t; x) :for F Hausdor¤ continuos with compact valued
Answers: Filippov (1972) for F continuous in both variables: Kaczinski-

Olech (1974) and Antosiewicz-Cellina (1975) for F Carathéodory (measurable
with respect to t and continuous with respect to x);
For F lower semicontinuous: Bressan (1980), Lojasiewicz Jr, (1980).
For F upper semicontinuous without convex values: no solution in general:

for F (t; x) = �1 for x < 0; F (t; x) = f�1; 1g if x = 0; F (t; x) = 1 for x > 0
and for G (t; x) = �F (t; x) one has that x0 = G (t; x) ; x (0) = 0; t � 0 has no
solutions and x0 = F (t; x) ; x (0) = 0; t � 0 has exactly two solutions.
The approximate solutions method for equations
Let xn be a sequence of approximate solutions, of the equation x0 = f (t; x)

such that
x0n (t)� f (t; xn (t)) = "n;
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with "n ! 0; and let us assume that (xn)n converge to a limit x�:
If f is continuous in the variable x, we have that

x0n (t) = f (t; xn (t)) + "n ! f (t; x (t)) :

Hence, from the fact that the approximate solutions xn converge, one obtains
that their derivatives converge and, passing to the limit, that

x0 (t) = f (t; x (t)) :

In the case of inclusions, knowing that xn converge, even when the set-valued
map F is very regular (for instance, constant!) there is no reason to think that
their derivatives should converge (consider the case F (t:x) = RN .).
The approximate solutions method for inclusions
For the di¤erential inclusion x0 2 F (t; x) we construct a sequence of ap-

proximate solutions (xn)n�1 in the sense that there exists a sequence ("n)n�1
converging uniformly to zero such that

d (x0n (t) ; F (t; xn (t)� "n (t)))! 0 (126)

and show that a subsequence converge to a solution.
The convergence of (xn)n�1 to some bx in the space of absolutely continuous

functions implies the weak convergence in L1 of the derivatives x0n to bx0; and,
the uniformly convergence of (xn)n�1 ; and ("n)n�1 and the relation (126) imply

bx0n (t) 2 \
">0

co
[

kx�bx(t)k<"F (t; x) = "n; (127)

where co denotes the closed convex hull.
If the right-hand side of (127) is F (t; bx (t)) (what happens if F (t; :) is upper

semicontinuous, compact convex valued) then bx (:) is a solution of x0 2 F (t; x) :
Through a very clever and simple construction, Filippov was able to build

a sequence of approximate solutions whose derivatives bounded in L1 were
piecewise constant maps and equi oscillating.
Relation with Tonelli�s weak lower semicontinuity
The standard proof of the existence to di¤erential inclusions with u.s.c. right-

hand side is essentially the same proof as that of Tonelli�s weak lower semicon-
tinuity theorem, in the Calculus of Variations, where one wants to minimizeR b

a
L (t; x (t) ; x0 (t)) dt: (128)

One considers (xn)n, a minimizing sequence, in the case of the minimum
problem, or a sequence of approximate solutions, for the case of a di¤erential
inclusion.
From some a priory estimates for the solutions to the di¤erential inclusion,

or from the coercivity assumptions for the functional one is trying to minimize,
one infers that the derivatives xn are weakly pre-compact in L1 (or in Lp);
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An application of Mazur�s Lemma yields the strong convergence of a se-
quence of convex combinations of x0n:
At this point, exploiting either the convexity of the values of F , or the

convexity of L with respect to the variable x0�one obtains the result.
The �xed point approach for equations
To prove existence of solutions to a Cauchy problem

x0 = f (t; x) ; x (t0) = x0 (129)

where f : I�Rn ! Rn is continuous and bounded by a constant M then de�ne
the set

K = fx 2 C (I;Rn) : x (0) = x0; kx (t)� x (s)k �M jt� sj 8t; s 2 Ig

and the Picard operator

T (x) (t) = x0 +

tZ
t0

f (s; x (s)) ds:

Then K is compact and convex, T is continuous and T (K) � K; hence by
Schauder �xed point theorem, there exists a �xed point x 2 K; and this is a
solution of (7) :
The �xed point approach for inclusions
If F is a multivalued map with compact valued contained in a ball B (0;M) ;

the analog of Picard operator is the multifunction T : K ! 2K de�ned by

T (x) = fz 2 K : z0 (t) 2 F (t; x (t)) ds a.e. t 2 Ig

and we remark that any �xed point of T (x) (i.e., such that x 2 T (x)) is a
solution of the Cauchy problem

x0 2 F (t; x) ; x (t0) = x0 (130)

If F is upper semicontinuous with compact convex values, the same holds
for T (x) ; and by Kakutani �xed point theorem, T has a �xed point. Then
problem (130) has solutions, that we already proved by direct method.
Let consider the nonconvex case, and remark �rst that if h : K ! K is a

continuous selection of T , then by applying Schauder �xed point there exists
z 2 K a �xed point of h; which is a solution of (130) :
The �xed point approach for inclusions
Let � : K ! 2L

1(I;Rn) be de�ned by

� (x) =
�
u 2 L1 (I;Rn) : u (t) 2 F (t; x (t)) ds a.e. t 2 I

	
: (131)

If g : K ! L1 (I;Rn) is a continuos selection of � then h : K ! K de�ned
by

h (x) (t) = x0 +

tZ
t0

g (x) (s) ds
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is a continuous selection of T ; and so the existence of solutions is proved provided
such a continuous selection exists.
The existence of the continuos selection of � was the main novelty in the

proof of Antosiewicz and Cellina. The main idea was to interpolate continuously
between a �nite number of integrable functions by a method of "cutting and
piecing": perturb a function cutting its graph on a measurable set piecing in
this set a corresponding part of the graph of another function.
Decomposable sets
A set closed with respect to the cutting and piecing operation is called a

decomposable set.

De�nition 75 K � L1 (I;Rn) is called decomposable if

u�A + v�InA 2 K

for all u; v 2 K and for all A � I Lebesgue measurable.

Decomposable sets: substitute for convex sets
Fryszkowski (1981): any lower semicontinuous multifunction with decom-

posable values � (t; x) de�ned on a compact subset admits continuous selection.
Generalize Michael theorem and has been generalized by Bressan-Colombo

(1988) (avoided compactness assumption). Results concerning continuous selec-
tions from solution sets: Cellina, Fryszkowski-Rzezuchowski-Colombo-S., Bressan-
Cellina-Fryszkowski)
Selections method
For F : [0; T ]� Rn ! 2R

n

we want to solve the problem

x0 2 F (t; x) ; x (0) = x0 (132)

by the following method:
(i) �nd f : [0; T ]� Rn ! Rn such that

f (t; x) 2 F (t; x) 8 (t; x) 2 [0; T ]� Rn:

(ii) solve the Cauchy problem

x0 = f (t; x) ; x (0) = x0 (133)

Any solution of (133) is also a solution of (132) :
If F is l.s.c., closed convex valued then a continuos selection f from F exists

by Michael theorem and solutions to the problem (133) exist by Peano�s theorem.
If F is not convex valued; continuos selections from F may not exists, and so

(i) cannot be realized if we want f continuous: Moreover, if f is not continuous
then (133) may have not solutions.
Directional continuity
A property of f : [0; T ] � Rn ! Rn weaker than continuity, stronger than

measurability, strong enough to guarantee the existence of solutions to (133) :
Let M > 0 and �M be the cone

�M = f(t; x) 2 R� Rn : kxk �Mtg :
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De�nition 76 A function f : R � Rn ! Rn is called �M - continuous if for
all (t; x) 2 R� Rn and for each sequence (tn; xn) converging to (t; x) and such
that (tn � t; xn � x) 2 �M for all n 2 N; one has that

limn!1f (tn; xn) = f (t; x) :

f : R � Rn ! Rn is called directionally continuous if it is �M - continuous
for some M > 0:

A. Pucci (1971) and Bressan (1988) proved that (133) admits Carathéodory
solutions if f is directionally continuous.
Bressan (1988): for every M > 0; every l.s.c., closed values multifunction

admits a �M - continuous selection.
Bressan(1990): If F : [0; T ]�Rn ! 2R

n

is a l.s.c., bounded, compact valued
then (133) admits a solution on [0; T ] :
Baire category method
The Baire category method, was introduced by De Blasi and Pianigiani

(1985) and start from the Cellina�s remark that the set of solutions of the Cauchy
problem

x0 2 f�1; 1g ; x (0) = 0 (134)

is a G� dense subset (i.e., a countable intersection of open dense subsets) of the
set of solutions of the Cauchy problem

x0 2 [�1; 1] ; x (t0) = 0: (135)

De Blasi and Pianigiani consider the problems

x0 2 F (t; x) ; x (0) = x0; (136)

x0 2 @F (t; x) ; x (t0) = x0 (137)

where F is a continuous multivalued map, de�ned on an open set of R�E; with
closed, convex bounded values having nonempty interior in a re�exive Banach
space E; and @F (t; x) denotes the boundary of F (t; x) :
DenoteMF andM@F the set of solutions of (136) and (137) ; respectively.
Show thatMF is nonempty and that with the uniformly convergence metric,

it is a complete metric space.
Show that M@F is the intersection of a countable family of open dense

subsets ofMF ; hence it is a G� dense subset ofMF ; hence it is nonempty and
problem (137) admits solutions.
Comments
In a review of Deimling�s book on Di¤erential inclusions (published in Bull.

Amer. Math. Soc., 1995), Cellina says: "di¤erential inclusions have been a
formidable gymnasium for the creation of ideas to treat non convex problems,
but this instrument, mathematically challenging and stimulating as it had been,
was essentially of no use in describing the real word.
This strong opinion has been changed and the reason is given by two exam-

ples that we will discuss: Fermat principle and the Brachystocrone problem.
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Fermat (around 1650) stated the well known principle that the light, to pass
from a point to a second point in space, through a medium where the speed of
the light is (possibly) variable, among all the possible paths that join the two
points, follows the path that minimizes the time.
The problem of the Brachystocrone: �nd the path, leading from a point P1

to a point P2 such that an object, subject to gravity only, falling along this
path, would reach the point P2 in minimum time.
Fermat principle
Fermat�s principle predates of thirty years the celebrated Brachystocrone

Problem of Jakob Bernoulli, and, remarkably, its aim is to explain a physical
phenomenon that is discontinuous: Fermat�s aim was to characterize the path
followed by light in passing through two media with di¤erent speed coe¢ cients,
as water and air, and in particular to explain why a stick, partially sunk under
water, seems to be broken to an observer.
We can model the problem in the following way: given two points P1 and P2

and the speed �(x) of light at the point x, prove that among all the solutions
to the di¤erential inclusion

x0(t) 2 �(x(t))@B or, equivalently, kx0 (t)k = �(x(t)):

joining P1 and P2 (the virtual trajectories followed by the light to travel from
P1 to P2) there is a solution that travels from P1 to P2 in minimum time.
It is clear that we would like to prove this theorem under conditions on the

function that allow it to be discontinuous , otherwise we do not prove what
Fermat had in mind to prove.
Although at the beginning of the Calculus of Variations, this problem was

modeled as the minimization of an integral functional, it is today recognized as
being a typical minimum time problem for solutions to di¤erential inclusions,
and it happens that the di¤erential inclusion involved is non- convex valued.
The minimization of functions where some non-convexity is involved is di¢ -

cult, since the basic argument used in the Calculus of Variations breaks down.
Again the model present a lack of convexity, so that it is not lower semicon-

tinuous, to use the standard language of the Calculus of Variations.
Still, the existence of a solution for the problem follows along the same lines

as for Fermat�s Principle.
Some open questions

� Investigate new existence results for solutions to non-convex di¤erential in-
clusions and to the minimization of functionals constrained by non-convex
di¤erential inclusions.

� In the paper A. Cellina, A. Ferriero, and E. M. Marchini. On the existence
of solutions to a class of minimum time problems and applications to Fer-
mat�s principle and to the Brachystocrone, published on Systems Control
Lett., 55:119�123, 2006 a technique for proving existence of solutions for
a class of minimum time problems, subject to di¤erential inclusions with
non-convex right hand side., is presented.
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� However, besides the minimum time problem, other problems on a vari-
able interval of time exist in the literature, mainly the optimal control
literature; for instance, a purpose could be to reach the �nal point not
necessarily in minimum time, but minimizing a functional of the kindZ t

0

[1 + L(x(s); x0(s))] ds

where the term L takes into account the fact that the stress on the system
has to be penalized.

� A similar problem is the attempt of proving existence results of solu-
tions to di¤erential inclusions with upper semicontinuous right hand side,
by passing to the limit in the approximate solutions, not weakly, as it
is customarily done, but strongly in the derivatives, following ideas in
Cellina-Monti-Spadoni and Visintin.

� Study the existence of solutions depending continuously on a¢ ne bound-
ary data for gradient inclusions Develop an existence theory for gradient
inclusions with convex and nonconvex right-hand side. By the methods
of upper and lower solutions (Goncharov-Ornelas, 2006) obtain extremal
solutions and their density in the set of solutions of the convexi�ed prob-
lem.
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