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Hilbert, 1930

“..Wir müssen wissen, wir werden
wissen!”
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Hilbert’s Programme’s Mathematical Goals

Let T be an infinitary foundation of mathematics, and F its
finitary part. Prove (using the resources in F ) that:

T is consistent.

T is complete.

To review:

(Consistency) T ⊬ ϕ ∧ ¬ϕ.
(Completeness) (∀ϕ)(T ⊢ ϕ ∨ T ⊢ ¬ϕ).

If T is consistent, it doesn’t prove a contradiction. If it is complete
(in the sense shown above!), it is able to prove, for any sentence ϕ,
whether it or its negation is a theorem.
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Completeness

But notice the difference between this version of completeness and
the following one:

Completeness

A theory T is complete iff:

T |= ϕ→ T ⊢ ϕ

Gödel had already proved:

Theorem (Completeness Theorem, [Gödel, 1929])

Given any first-order theory T :

T |= ϕ↔ T ⊢ ϕ
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Complete Theories

Completeness is not an unattainable feature of theories. Examples
of theories which are complete include:

The theory F of real-closed fields. LF = {0, 1,+, ·, <}
The theory G of (Abelian) groups. LG = {0,+}.
The theory DLO of dense linear orders (with no first or last
element). LDLO = {<}
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Formal Arithmetic

We have seen that the theory one may (safely) use to investigate
the completeness and consistency of T is some finitary part of T ,
which we denote with F .

In the previous lecture, we characterised F as ‘Skolem arithmetic’.
A more accurate characterisation of F may be carried out.

For our purposes, our T may just be the (first-order) Peano
Axioms (PA). Remember that these were (in a nutshell):

Peano Axioms

1 N(0).

2 ¬(∃x)S(x , 0).
3 S(x) = S(y) → x = y .

4 (Induction) F (0) ∧ (∀x)(F (x) → F (x + 1)) → (∀x)F (x).
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Formal Arithmetic/Cont’d.

LT shall consist of:

A constant symbol 0.

Three function letters: f1(t) = t ′, f2(t, s) = t + s,
f3(t, s) = t · s.
A predicate letter A(t, s) for equality (=).

Numerals: 0̄, 1̄, 2̄, ... (note: 1̄ = 0′, 2̄ = 1′, etc.)

The axioms, as said, are the (first-order) Peano axioms.

(Induction) becomes the induction rule (via MP):

Φ(0), (∀x)(Φ(x) → Φ(x ′)) ⊢T (∀x)Φ(x)

where ‘Φ’ is a schematic letter standing for any predicate.
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Enter Gödel: Number-Theoretic Functions

The key reference, here, is [Gödel, 1931].

Gödel considers number-theoretic functions, a class of functions
which, when taking as arguments natural numbers, output natural
numbers.

Let R(k1, ..., kn) a number-theoretic relation. This is said to be
expressible if there exists a formula Φ(x1, ...., xn) such that:

Whenever R(k1, ..., kn) is true, then ⊢T Φ(k̄1, ..., k̄n);

Whenever R(k1, ..., kn) is false, then ⊢T ¬Φ(k̄1, ..., k̄n);
Then, he considers number-theoretic functions. These are said to
be representable if and only if:

If f (k1, ..., kn) = m, then ⊢T Φ(k̄1, ..., k̄n, m̄);

⊢T (∃!y)Φ(k̄1, ..., k̄n, y)



Incompleteness Further Incompleteness

Recursivity

Take the initial functions:

The zero function: Z (x) = 0.

The projection function: Un
i (x1, ..., xn) = xi (for all xi ).

The successor function: S(x) = x + 1.

and three rules:

Substitution (Sub).
f (x1, ..., xn) = g(h(x1, ..., xn), ...., hm(x1, ..., xn)).

Recursion (Rec).

f (x1, ..., xn, 0) = g(x1, ..., xn).
f (x1, ..., xn, y + 1) = h(x1, ..., xn, y , f (x1, ..., xn, y)).

Restricted µ-operator (µ-oper).

Suppose µy(g(x1, ..., xn, y) = 0), the least y such that
g(x1, ..., xn, y) = 0, exists.
One can define f (x1, ..., xn) = µy(g(x1, ..., xn, y) = 0).
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Recursivity/Cont’d.

A function is said to be primitive recursive (p.r.) if and only if
it is obtained from the initial functions by a finite number of
applications of (Sub) and (Rec).

A function is recursive if and only if it is obtained from the
initial functions by a finite number of applications of (Sub),
(Rec) and (µ-oper).

Theorem (Gödel)

Assuming T is consistent, the class of all representable (in T )
number-theoretic functions is exactly the class of all primitive
recursive functions.
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Arithmetisation of Syntax

This consists in assigning a natural number to each symbol or
string of symbols in LT .

A Gödel function is a p.r. function G : LT → N. The value of G at
u is called ‘Gödel number of u’ (denoted ⌜u⌝, where u is in LT ).

Different symbols will have different Gödel numbers (GN).

Now, consider the following predicates of T :

IC (x)=‘x is the GN of a constant’

FL(x)=‘x is the GN of a function letter’

PL(x)=‘x is the GN of a predicate’ letter’

These are all p.r. predicates, which shows that T has a p.r.
vocabulary.



Incompleteness Further Incompleteness

More Primitive Recursive Functions

Now, consider the predicate:

PrAx(x): ‘x is the GN of a proper axiom of T ’.

If PrAx(x) is p.r., then T has a p.r. axiom set. It can be proved
that T has this property.

As a consequence:

Ax(x)=‘x is the GN of an axiom of T ’.

Prf (x)=‘x is the GN of a proof in T ’.

Pf (x , y)=‘x is the GN of a proof of the sentence of T whose
GN is y ’.

are all p.r.
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What is F , again?

We have seen that the class of functions representable in T is
precisely the class of all recursive functions.

One may, then, assume that Hilbert’s F is equal to (Primitive)
Recursive Arithmetic, the class of number-theoretic functions
representable in T .

T , in particular, has a p.r. axiom set (= is computably
axiomatisable).

So, what Gödel needs to check is whether such a computably
axiomatisable arithmetical theory T is complete and consistent by
using only F , in turn, reasoning based on p.r. arithmetic.
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Fixed Point Lemma

Theorem (Fixed-Point Lemma)

T proves that there exists ψ such that:

ψ ↔ ϕ(⌜ψ⌝)

Proof. Take the p.r. function: sub(ϕ(⌜x⌝),m) = ⌜ϕ(m)⌝. Let
θ(x) = ϕ(sub(x , x)), and n = ⌜θ(n)⌝. We put: ψ = θ(n).
Now we have the following equivalences:

ψ ↔ θ(n)

ψ ↔ ϕ(sub(n, n))

ψ ↔ ϕ(sub(⌜θ(x)⌝, n))

ψ ↔ ϕ(⌜θ(n)⌝)

ψ ↔ ϕ(⌜ψ⌝)
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Fixed Point Lemma/Cont’d.

As a corollary, one can prove:

Theorem

T ⊢ ψ ↔ ¬PrT (⌜ψ⌝).

The sentence ψ ↔ ¬PrT (⌜ψ⌝) is called Gödel’s sentence (and is
denoted by G).

G says: ‘This sentence is such that its Gödel number is not that of
a proof in T .’

More simply G says: ‘This sentence is not provable’.
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First Incompleteness Theorem

Theorem (First Incompleteness Theorem, [Gödel, 1931])

Assuming the consistency of (the p. r. axiomatisable theory) T ,
there exists a sentence of T , G, which isn’t provable or disprovable
in T .

Proof. Suppose G is provable. There is, then, a proof of G, so we
have: PrT (⌜ψ⌝), the negation of ψ. Contradiction. But T can’t
prove ¬G either, if it is consistent, since this is equal to PrT (⌜ψ⌝),
which, as we have seen, isn’t provable (alternatively: G is true,
since it says that it isn’t provable, so there is a true sentence of T
that isn’t provable). □
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Second Incompleteness Theorem

Theorem (Second Incompleteness Theorem, [Gödel, 1931])

Assuming the consistency of (the p. r. axiomatisable theory) T , T
cannot prove its own consistency (it can’t prove Con(T ).

Proof. First, formalise ‘if T is consistent, then T doesn’t prove G’
as a statement of T . So, we have:

T ⊢ Con(T ) → ¬PrT (⌜ψ⌝)

but this is equivalent to:

T ⊢ Con(T ) → ψ

It follows that T ⊬ Con(T ) for, otherwise, it would prove ψ (which
it doesn’t). □



Incompleteness Further Incompleteness

The Rosser Sentence

Rosser formulated a slightly different version of the proof which
shows that the notion of truth isn’t really needed.

Using the Fixed-Point Lemma, he was able to produce the
sentence ρ:

‘there is a proof of ¬ρ whose Gödel number is less than the Gödel
number of a proof of ρ’

Theorem (Rosser, Gödel)

T doesn’t prove ρ, and it doesn’t prove ¬ρ.

Proof. Suppose T proves ρ. Then, there is a proof of ¬ρ with a
smaller Gödel number. Suppose T proves ¬ρ, which means that
‘there is no proof of ¬ρ with a smaller Gödel number’. Now,
because of what ¬ρ says, T proves that there exists a proof of ρ
(smaller than a proof of ¬ρ). In both cases, we derive a
contradiction □.
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On the Rosser Sentence, Again

It should be noted that Rosser’s argument doesn’t use:

The assumption that the theory T is ω-consistent.

The assumption that T is true.

ω-consistency

A theory T is ω-consistent iff whenever T proves ¬P(n), for each
n, it doesn’t prove (∃x)P(x).

This means that:

The assumption of truth is not necessary, so Gödel’s argument
may just be taken to be purely syntactic.

The assumption of ω-consistency (in Gödel’s original proof) is
not necessary, only plain consistency of T is needed.
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Final Remarks

One further annotation. Since ¬Con(T ) cannot be refuted by T ,
then it is consistent with T , that is, there is a model M of T such
that M |= ¬Con(T ).

But notice that Con(T ) is a number-theoretic statement
representable in T , as we know, that is a statement about natural
numbers.

If there is a counterexample to it, then there would be natural
numbers such that ¬Con(T ) and, by the Completeness Theorem,
this would be provable. But we have proved that T doesn’t prove
¬Con(T ).

So, any model of T must contain non-standard natural numbers.
So, this proves that there are non-standard models of arithmetic.
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Tarski’s Theorem

Suppose we may define a ‘truth predicate’ Tr(x), which says that
‘x is a true sentence of T ’.

If such a predicate were p.r., then we could enumerate all the
truths of T .

Alfred Tarski, in a celebrated theorem, dashed all such hopes, by
showing:

Theorem (Tarski)

There is no p.r. predicate Tr(x) in the language of arithmetic such
that N |= ψ ↔ Tr(⌜ψ⌝), where Tr(x)=‘x is true’.

Proof. It follows from the Fixed Point Lemma that there must be
a sentence ψ such that T ⊢ ψ ↔ ¬Tr(⌜ψ⌝). □
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Remarks on Tarski’s theorem

The sentence ψ, this time, says: ‘This sentence is such that its GN
is not one of a true sentence’.

So, ψ just says: ‘I am not true’. Since it is provable in T , a
contradiction follows immediately.

Tarski’s theorem shows that the set of truths of T is not r.e., but
the original version of his theorem proves that truth isn’t definable
in any (not necessarily p.r. axiomatisable) theory T .

Tarski’s result, thus, posits even stronger limitations on formal
systems.
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Goodstein’s Theorem

One could think that Gödel’s sentence G and Rosser’s sentence ρ
are just contrived examples of independent statements.

Years later, genuine number-theoretic statements were found,
however, which exhibit the incompleteness of PA.

One is related to ‘Goodstein sequences’. A Goodstein sequence
may be defined as follows:

Start with a natural number, say, N.

Represent the number as sum of powers of 2 (extending this
procedure to the exponents), to get N(2).

In N(2), replace all 2s with 3s, and subtract 1 to get N(3).

In N(3), replace all 3s with 4s and subtract 1, to get N(4).

...

The sequence < N,N(2),N(3),N(4), ... > is called Goodstein
sequence.
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Goodstein’s Theorem

Theorem (Goodstein)

For any initial N, there is an n ≥ 2, such that N(n) = 0.

Theorem (Kirby, Paris, 1982)

Goodstein’s theorem is unprovable in PA.

This can be shown by using ‘base-ω’-representations of Goodstein
numbers, and these are not available to PA.

Clearly, Goodstein’s theorem is provable in stronger theories. For
instance, PA+‘there exist ϵ0’.

ϵ0 = ωωωω...

is a very important (countable) ordinal, since it
represents the ordinal strength of PA.
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A Digression: Löb’s Theorem

Consider Löb’s sentence L:

‘This sentence is provable’.

Is this sentence true or false? One would naturally be inclined to
say that ‘it depends’.

Löb famously established that:

Theorem

The Löb sentence is provable, hence it is true. For any sentence ψ
we have that:

PA ⊢ PrPA(⌜ψ⌝) → ψ, then PA ⊢ ψ
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Tower of Incomplete Theories

Incompleteness is a crucial phenomenon of theories which
(computably) enumerate their axioms.

If one drops the requirement that the axioms are p.r., just, for
instance, arithmetically definable, then one may, in fact, obtain
theories which prove their own consistency ([Feferman, 1960]).

It should be noted that, e.g., PA+Con(PA) does not prove its own
completeness either, so (Con(PA+ Con(PA)) is independent of the
theory.

We may, thus, generate, theories which are ‘consistency stronger’,
such as:

PA+ Con(PA),PA+ Con(PA+ Con(PA)), ...

all of which cannot prove their own consistency, but the
consistency of weaker theories.
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Two Alternative Programmes

Reverse Mathematics (RM)

RM takes place at the level of second-order number theory. It
consists of five big theories: RCA0, WKL0, ACA0, ATR0, Π

1
1-CA0

of different strengths. It has been proved that almost all natural
theorems of mathematics can be proved (are equivalent to set
existence principles) in one of these theories ([Simpson, 2009],
[Simpson, 2014]).

Large Cardinals (LC)

LC takes place in the realm of the higher infinite (cardinals
provably not existing in ZFC). It has been noticed that most
natural (set-theoretic) statements are equiconsistent with
ZFC+‘there exists a large cardinal κ’. Moreover, LC induces a
reduction of incompleteness ([Kanamori, 2009]).
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Incompleteness: Moving Beyond

These two programmes seem to express two alternative ways to
construe ‘going beyond incompleteness’:

Although there is no way to fix incompleteness, we may take
theories whose consistency is slightly stronger than that of PA
as our foundation, because, among other things, all of
(concrete) maths is expressible in those theories.

‘Genuine incompleteness’ depends on our inability to capture
the whole of the concept of set; once found the right axioms
(large cardinal axioms are good candidates), this
incompleteness will be strongly reduced. Other forms of
incompleteness derive from inherent limitations in ‘finitistic
reasoning’.
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Lecture’s Main Sources

[Hamkins, 2020], ch. 7

[Mendelson, 1997], ch. 3

[Franzen, 2005]
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