Set 062016

Nell’ambito del programma “Visiting Professor 2016” finanziato dalla Regione Autonoma della Sardegna, la Prof.ssa. Irene I. ONNIS (Università di San Paolo, Brasile) terrà le seguenti lezioni

28 Settembre ore 16 Aula B
Title: Helix surfaces in the Berger sphere and in the special linear group
Abstract: In recent years much work has been done to understand the geometry of surfaces whose unit normal vector field forms a constant angle with a fixed field of directions of the ambient space. These surfaces are called helix surfaces or constant angle surfaces and they have been studied in most of the three-dimensional geometries. In this talk, we present a characterization of helix surfaces in the Berger sphere. In particular, we prove that a helix surface is invariant by the action of a one-parameter group of isometries of the ambient space. Also, we discuss some recent results about helix surfaces in the special linear group SL(2,R).

4 Ottobre ore 16 Aula B
Title: Enneper representation of minimal surfaces in the Lorentz-Minkowski 3-space
Abstract: In the Lorentz-Minkowski 3-space a Weierstrass representation type theorem was proved by Kobayashi (in 1983) for spacelike minimal immersions and by Konderak (in 2005) for the case of timelike minimal surfaces. Recently, these theorems were extended for immersed minimal surfaces in Riemannian and Lorentzian 3-dimensional manifolds by Lira, Melo and Mercuri. In this talk, we prove an Enneper-type representation for spacelike and timelike minimal surfaces in the Lorentz-Minkowski space. Then, we exhibit some examples of minimal surfaces in this space constructed via the Enneper representation formula, that it is equivalent to the Weierstrass representation obtained by Kobayashi and by Konderak, respectively.

Ott 032015

Prof. Sebastian Heller (University of Tubingen)

November 17-18, 16-18 hr., Palazzo delle Scienze
Contact Stefano Montaldo for more information.

In these lectures I will talk about constant mean curvature (CMC) surfaces of higher genus in space forms from the integrable systems point of view. CMC surfaces are characterized by the harmonicity of their Gauss map and hence deliver an associated family of CMC surfaces (with periods). After recalling the general gauge theoretic description of CMC surfaces and their associated families, I will explain the recent spectral curve approach to CMC surfaces of higher genus. I will introduce a flow on the spectral data which turns out to be a powerful tool for a detailed study of the moduli space of CMC surfaces. Finally, I will report about numerical experiments and about the visualization of CMC surfaces. These lectures are partially based on joint work with Lynn Heller and Nicholas Schmitt.

 Scritto da in 3 ottobre 2015  News  Commenti disabilitati su Corso Integrable systems methods for constant mean curvature surfaces
Apr 252015

Plan of the course

  • Lezione 1 (martedì 5 maggio 17-19) Strutture complesse e forme simplettiche.
  • Lezione 2 (mercoledì 6 maggio 17-19) Metriche a curvature costante su varietà reali e superfici di Riemann.
  • Lezione 3 (giovedì 7 maggio 17-19) Varieta’ Kahleriane: coomologia, fibrati lineari, classi di Chern e curvatura.
  • Lezione 4 (venerdì 8 maggio 17-19) Varieta’ Kahleriane di Einstein. ddbar-Lemma e Congeture di Calabi. Teorema di Yau (con cenni di dimostrazione).
 Scritto da in 25 aprile 2015  News  Commenti disabilitati su Metriche speciali su varietà complesse
Feb 232015

The schedule of the course has been further modified:

  • February 10, 11, 12, 13, hr. 10.00-12.00
  • March 11, 12, 13, 23, 24, 25 hr. 17.00-19.00

The lectures will take place at the Palazzo delle Scienze. in room B.

 Scritto da in 23 febbraio 2015  News  Commenti disabilitati su Representation of Lie groups and Lie algebras
credits | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar